Advertisement

Cyclic GMP as substrate and regulator of cyclic nucleotide phosphodiesterases (PDEs)

  • D. M. Juilfs
  • S. Soderling
  • F. Burns
  • J. A. Beavo
Chapter
Part of the Reviews of Physiology, Biochemistry and Pharmacology book series (volume 135)

Keywords

Purkinje Cell Atrial Natriuretic Peptide Calcium Current Olfactory Neuron Cyclic Nucleotide Phosphodiesterase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agull'o, L., and Garc'ia, A.: Ca2+/calmodulin-dependent cyclic GMP phosphodiesterase activity in granule neurons and astrocytes from rat cerebellum. Eur J Pharmacol 323 (1):119–25, 1997Google Scholar
  2. Bakalyar, H. A., and Reed, R. R.: Identification of a specialized adenylyl cyclase that may mediate odorant detection. Science 250 (4986):1403–6, 1990Google Scholar
  3. Baltrons, M. A., Saadoun, S., Agullo, L., and Garcia, A.: Regulation by calcium of the nitric oxide cyclic GMP system in cerebellar granule cells and astroglia in culture. Journal Of Neuroscience Research 49 (3):333–341, 1997Google Scholar
  4. Beavo, J. A.: Cyclic nucleotide phosphodiesterases: functional implications of multiple isoforms. Physiol Rev 75 (4):725–48, 1995Google Scholar
  5. Beavo, J. A., Hardman, J. G., and Sutherland, E. W.: Stimulation of adenosine 3′,5′-monophosphate hydrolysis by guanosine 3′,5′-monophosphate. J Biol Chem. 264:3841–3846, 1971Google Scholar
  6. Bentley, J. K., Kadlecek, A., Sherbert, C. H., Seger, D., Sonnenburg, W. K., Charbonneau, H., Novack, J. P., and Beavo, J. A.: Molecular cloning of cDNA encoding a “63”-kDa calmodulin-stimulated phosphodiesterase from bovine brain. J Biol Chem 267 (26):18676–82, 1992Google Scholar
  7. Bloom, T. J., and Beavo, J. A.: Identification and tissue-specific expression of PDE7 phosphodiesterase splice variants. Proceedings Of The National Academy Of Sciences Of The United States Of America 93 (24):14188–14192, 1996Google Scholar
  8. Boguski, M. S., Lowe, T. M., and Tolstoshev, C. M.: dbEST-database for “expressed sequence tags” [letter]. Nat Genet 4 (4):332–3, 1993Google Scholar
  9. Boolell, M., Allen, M. J., Ballard, S. A., Gepi, A. S., Muirhead, G. J., Naylor, A. M., Osterloh, I. H., and Gingell, C.: Sildenafil: an orally active type 5 cyclic GMP-specific phosphodiesterase inhibitor for the treatment of penile erectile dysfunction. Int J Impot Res 8 (2):47–52, 1996Google Scholar
  10. Bradley, J., Zhang, Y. N., Bakin, R., Lester, H. A., Ronnett, G. V., and Zinn, K.: Functional expression of the heteromeric “olfactory” cyclic nucleotide-gated channel in the hippocampus: A potential effector of synaptic plasticity in brain neurons. Journal Of Neuroscience 17 (6):1993–2005, 1997Google Scholar
  11. Brunet, L. J., Gold, G. H., and Ngai, J.: General anosmia caused by a targeted disruption of the mouse olfactory cyclic nucleotide-gated cation channel. Neuron 17 (4):681–693, 1996Google Scholar
  12. Buck, L., and Axel, R.: A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65 (1):175–87, 1991Google Scholar
  13. Burns, F., Hanson, K., Miller, J. B., Rybalkin, S., Clarke, W. R., and Beavo, J. A.: Localization of PDE5 in Mouse Lung and Brain and Cloning of Two Mouse PDE5 Isoforms. Third International Conference on Cyclic Nucleotide Phosphodiesterases Abstract #67, 1996Google Scholar
  14. Burns, F., Rodger, I. W., and Pyne, N. J.: The catalytic subunit of protein kinase A triggers activation of the type V cyclic GMP-specific phosphodiesterase from guinea-pig lung. Biochem J 283:487–491, 1992Google Scholar
  15. Carcamo, B., Hurwitz, M. Y., Craft, C. M., and Hurwitz, R. L.: The mammalian pineal expresses the cone but not the rod cyclic gmp phosphodiesterase. Journal of Neurochemistry 65 (3):1085–1092, 1995Google Scholar
  16. Charbonneau, H.: Structure-function relationships among cyclic nucleotide phosphodiesterases. In Cyclic nucleotide phosphodiesterases: structure, function, regulation and drug action, ed. by J. Beavo and M. D. Houslay, vol. 2, pp 267–298, John Wiley & Sons Ltd., Chichester, 1990Google Scholar
  17. Charbonneau, H., Prusti, R. K., LeTrong, H., Sonnenburg, W. K., Mullaney, P. J., Walsh, K. A., and Beavo, J. A.: Identification of a noncatalytic cGMP-binding domain conserved in both the cGMP-stimulated and photoreceptor cyclic nucleotide phosphodiesterases. Proc Natl Acad Sci U S A 87 (1):288–92, 1990Google Scholar
  18. Cherry, J. A., and Davis, R. L.: A mouse homolog of dunce, a gene important for learning and memory in drosophila, is preferentially expressed in olfactory receptor neurons. Journal of Neurobiology 28 (1):102–113, 1995Google Scholar
  19. Cheung, P. P., Xu, H., McLaughlin, M. M., Ghazaleh, F. A., Livi, G. P., and Colman, R. W.: Human platelet cGI-PDE: expression in yeast and localization of the catalytic domain by deletion mutagenesis. Blood 88 (4):1321–9, 1996Google Scholar
  20. Chiu, N., Park, I., and Reid, I. A.: Stimulation of renin secretion by the phosphodiesterase iv inhibitor rolipram. Journal of Pharmacology & Experimental Therapeutics 276 (3):1073–1077, 1996Google Scholar
  21. Chiu, P. J. S., Vemulapalli, S., Chintala, M., Kurowski, S., Tetzloff, G. G., Brown, A. D., and Sybertz, E. J.: Inhibition of platelet adhesion and aggregation by E4021, a type V phosphodiesterase inhibitor, in guinea pigs. Naunyn Schmiedebergs Archives Of Pharmacology 355 (4):463–469, 1997Google Scholar
  22. Cohen, A. H., Hanson, K., Morris, K., Fouty, B., Mcmurtry, I. F., Clarke, W., and Rodman, D. M.: Inhibition of cyclic 3′-5′-guanosine monophosphate-specific phosphodiesterase selectively vasodilates the pulmonary circulation in chronically hypoxic rats. Journal of Clinical Investigation 97 (1):172–179, 1996Google Scholar
  23. Degerman, E., Belfrage, P., and Manganiello, V. C.: Structure, localization, and regulation of cGMP-inhibited phosphodiesterase (PDE3). Journal Of Biological Chemistry 272 (11):6823–6826, 1997Google Scholar
  24. Degerman, E., Belfrage, P., Newman, A. H., Rice, K. C., and Manganiello, V. C.: Purification of the putative hormone-sensitive cyclic AMP phosphodiesterase from rat adipose tissue using a derivative of cilostamide as a novel affinity ligand. J Biol Chem 262 (12):5797–807, 1987Google Scholar
  25. Degerman, E., Smith, C. J., Tornqvist, H., Vasta, V., Belfrage, P., and Manganiello, V. C.: Evidence that insulin and isoprenaline activate the cGMP-inhibited low-Km cAMP phosphodiesterase in rat fat cells by phosphorylation. Proc Natl Acad Sci U S A 87 (2):533–7, 1990Google Scholar
  26. Delporte, C., Poloczek, P., and Winand, J.: Role of phosphodiesterase ii in cross talk between cgmp and camp in human neuroblastoma nb-ok-1 cells. American Journal of Physiology Cell Physiology 39 (1), 1996Google Scholar
  27. Dickinson, N. T., Jang, E. K., and Haslam, R. J.: Activation of cGMP-stimulated phosphodiesterase by nitroprusside limits cAMP accumulation in human platelets: Effects on platelet aggregation. Biochemical Journal 323, 1997Google Scholar
  28. Farber, D. B.: From mice to men: the cyclic GMP phosphodiesterase gene in vision and disease. The Proctor Lecture [published erratum appears in Invest Ophthalmol Vis Sci 1995 May;36(6):976]. Invest Ophthalmol Vis Sci 36 (2):263–75, 1995Google Scholar
  29. Fisch, A., Michaelhepp, J., Meyer, J., and Darius, H.: Synergistic interaction of adenylate cyclase activators and nitric oxide donor sin-1 on platelet cyclic amp. European Journal of Pharmacology Molecular Pharmacology Section 289 (3):455–461, 1995Google Scholar
  30. Fisher, D. A., Smith, J. F., Pillar, J. S., St. Denis, S. H., and Cheng, J. B.: Isolation and Characterization of PDE9A, a Novel Human cGMP-Specific Phosphodiesterase. J. Biol. Chem. In Press, 1998Google Scholar
  31. Florio, V. A., Sonnenburg, W. K., Johnson, R., Kwak, K. S., Jensen, G. S., Walsh, K. A., and Beavo, J. A.: Phosphorylation of the 61-kDa calmodulin-stimulated cyclic nucleotide phosphodiesterase at serine 120 reduces its affinity for calmodulin. Biochemistry 33 (30):8948–8954, 1994Google Scholar
  32. Francis, S. H., and Corbin, J. D.: Purification of cGMP-binding protein phosphodiesterase from rat lung. Methods Enzymol 159:722–9, 1988Google Scholar
  33. Franks, D. J., and Macmanus, J. P.: Cyclic GMP stimulation and inhibition of cyclic AMP phosphodiesterase from thymic lymphocytes. Biochem. Biophys. Res. Commun. 42:844–849, 1971Google Scholar
  34. Grant, P. G., and Colman, R. W.: Purification and characterization of a human platelet cyclic nucleotide phosphodiesterase. Biochemistry 23 (8):1801–1807, 1984Google Scholar
  35. Grant, P. G., Mannarino, A. F., and Colman, R. W.: cAMP-mediated phosphorylation of the low-Km cAMP phosphodiesterase markedly stimulates its catalytic activity. Proc Natl Acad Sci USA 85 (23):9071–5, 1988Google Scholar
  36. Greer, C. A., Stewart, W. B., Teicher, M. H., and Shepherd, G. M.: Functional development of the olfactory bulb and a unique glomerular complex in the neonatal rat. J Neurosci 2 (12):1744–59, 1982Google Scholar
  37. Han, X., Shimoni, Y., and Giles, W. R.: A cellular mechanism for nitric oxidemediated cholinergic control of mammalian heart rate. Journal of General Physiology 106 (1):45–65, 1995Google Scholar
  38. Han, X. Q., Kobzik, L., Zhao, Y. Y., Opel, D. J., Liu, W. D., Kelly, R. A., and Smith, T. W.: Nitric oxide regulation of atrioventricular node excitability. Canadian Journal Of Cardiology 13 (12):1191–1201, 1997Google Scholar
  39. Hansen, R. S., and Beavo, J. A.: Purification of two calcium/calmodulin-dependent forms of cyclic nucleotide phosphodiesterase by using conformation-specific monoclonal antibody chromatography. Proc Natl Acad Sci USA 79 (9):2788–92, 1982Google Scholar
  40. Hanson, K. A., Ziegler, J. W., Rybalkin, S., Miller, J. W., Abman, S. H., and Clarke, J.: Chronic Pulmonary Hypertension Increases Fetal Lung cGMP Phosphodiesterase Activity. Am. J. Phy.: Lung cellular and molecular physiology In Press, 1998Google Scholar
  41. Harrison, S. A., Reifsnyder, D. H., Gallis, B., Cadd, G. G., and Beavo, J. A.: Isolation and characterization of bovine cardiac muscle cGMP-inhibited phosphodiesterase: a receptor for new cardiotonic drugs. Mol Pharmacol 29:506–514, 1986aGoogle Scholar
  42. Harrison, S. A., Reifsnyder, D. H., Gallis, B., Cadd, G. G., and Beavo, J. A.: Isolation and characterization of bovine cardiac muscle cGMP-inhibited phosphodiesterase: a receptor for new cardiotonic drugs. Mol Pharmacol 29:506–514, 1986bGoogle Scholar
  43. Hartell, N. A.: Inhibition of cgmp breakdown promotes the induction of cerebellar long-term depression. Journal of Neuroscience 16 (9):2881–2890, 1996Google Scholar
  44. Hartzell, H. C., and Fischmeister, R.: Opposite effects of cyclic GMP and cyclic AMP on Ca2+ current in single heart cells. Nature 323 (6085):273–5, 1986Google Scholar
  45. Hashimoto, Y., Sharma, R. K., and Soderling, T. R.: Regulation of Ca2+/calmodulin-dependent cyclic nucleotide phosphodiesterase by the autophosphorylated form of Ca2+/calmodulin-dependent protein kinase II. J Biol Chem 264 (18): 10884–7, 1989Google Scholar
  46. Haynes, J., Killilea, D. W., Peterson, P. D., and Thompson, W. J.: Erythro-9-(2-hydroxy-3-nonyl)adenine inhibits cyclic-3′,5′-guanosine monophosphatestimulated phosphodiesterase to reverse hypoxic pulmonary vasoconstriction in the perfused rat lung. Journal of Pharmacology & Experimental Therapeutics 276 (2):752–757, 1996Google Scholar
  47. Hillier, L. D., Lennon, G., Becker, M., Bonaldo, M. F., Chiapelli, B., Chissoe, S., Dietrich, N., DuBuque, T., Favello, A., Gish, W., Hawkins, M., Hultman, M., Kucaba, T., Lacy, M., Le, M., Le, N., Mardis, E., Moore, B., Morris, M., Parsons, J., Prange, C., Rifkin, L., Rohlfing, T., Schellenberg, K., Marra, M., and et, a. l.: Generation and analysis of 280,000 human expressed sequence tags. Genome Res 6 (9):807–28, 1996Google Scholar
  48. Hughes, B., Owens, R., Perry, M., Warrellow, G., and Allen, R.: PDE 4 inhibitors: The use of molecular cloning in the design and development of novel drugs. Drug Discovery Today 2 (3):89–101, 1997Google Scholar
  49. Iona, S., Cuomo, M., Bushnik, T., Naro, F., Sette, C., Hess, M., Shelton, E. R., and Conti, M.: Characterization of the rolipram-sensitive, cyclic AMP-specific phosphodiesterases: Identification and differential expression of immunologically distinct forms in the rat brain. Molecular Pharmacology 53 (1):23–32, 1998Google Scholar
  50. Ito, M., Nishikawa, M., Fujioka, M., Miyahara, M., Isaka, N., Shiku, H., and Nakano, T.: Characterization of the isoenzymes of cyclic nucleotide phosphodiesterase in human platelets and the effects of E4021. Cellular Signalling 8 (8):575–581, 1996Google Scholar
  51. Juilfs, D. M., Fulle, H. J., Zhao, A. Z., Houslay, M. D., Garbers, D. L., and Beavo, J. A.: A subset of olfactory neurons that selectively express cGMP-stimulated phosphodiesterase (PDE2) and guanylyl cyclase-D define a unique olfactory signal transduction pathway. Proceedings Of The National Academy Of Sciences Of The United States Of America 94 (7):3388–3395, 1997Google Scholar
  52. Kasuya, J., Goko, H., and Fujita, Y. Y.: Multiple transcripts for the human cardiac form of the cGMP-inhibited cAMP phosphodiesterase. J Biol Chem 270 (24):14305–12, 1995Google Scholar
  53. Kishi, Y., Ashikaga, T., Watanabe, R., and Numano, F.: Atrial natriuretic peptide reduces cyclic AMP by activating cyclic GMP-stimulated phosphodiesterase in vascular endothelial cells. J Cardiovasc Pharmacol 24 (3):351–357, 1994Google Scholar
  54. Kotera, J., Yanaka, N., Fujishige, K., Imai, Y., Akatsuka, H., Ishizuka, T., Kawashima, K., and Omori, K.: Expression of rat cGMP-binding cGMP-specific phosphodiesterase mRNA in Purkinje cell layers during postnatal neuronal development. Eur J Biochem 249 (2):434–42, 1997Google Scholar
  55. Lee, M. A., West, R. J., and Moss, J.: Atrial natriuretic factor reduces cyclic adenosine monophosphate content of human fibroblasts by enhancing phosphodiesterase activity. J Clin Invest 82 (2):388–93, 1988Google Scholar
  56. Leroy, M. J., Degerman, E., Taira, M., Murata, T., Wang, L. H., Movsesian, M. A., Meacci, E., and Manganiello, V. C.: Characterization of two recombinant pde3 (cgmp-inhibited cyclic nucleotide phosphodiesterase) isoforms, rcgip1 and hcgip2, expressed in nih 3006 murine fibroblasts and sf9 insect cells. Biochemistry 35 (31):10194–10202, 1996Google Scholar
  57. Lobban, M., Shakur, Y., Beattie, J., and Houslay, M. D.: Identification of two splice variant forms of type-IVB cyclic AMP phosphodiesterase, DPD (rPDE-IVB1) and PDE-4 (rPDE-IVB2) in brain: selective localization in membrane and cytosolic compartments and differential expression in various brain regions. Biochem J, 1994Google Scholar
  58. Lochhead, A., Nekrasova, E., Arshavsky, V. Y., and Pyne, N. J.: The regulation of the cGMP-binding cGMP phosphodiesterase by proteins that are immunologically related to gamma subunit of the photoreceptor cGMP phosphodiesterase. Journal Of Biological Chemistry 272 (29):18397–18403, 1997Google Scholar
  59. Loughney, K., Martins, T. J., Harris, E. A. S., Sadhu, K., Hicks, J. B., Sonnenburg, W. K., Beavo, J. A., and Ferguson, K.: Isolation and characterization of cDNAs corresponding to two human calcium, calmodulin-regulated, 3′,5′-cyclic nucleotide phosphodiesterases. Journal Of Biological Chemistry 271 (2):796–806, 1996Google Scholar
  60. MacFarland, R. T., Zelus, B. D., and Beavo, J. A.: High concentrations of a cGMP-stimulated phosphodiesterase mediate ANP-induced decreases in cAMP and steroidogenesis in adrenal glomerulosa cells. J Biol Chem 266 (1):136–42, 1991Google Scholar
  61. MacLean, M. R., Johnston, E. D., McCulloch, K. M., Pooley, L., Houslay, M. D., and Sweeney, G.: Phosphodiesterase isoforms in the pulmonary arterial circulation of the rat: Changes in pulmonary hypertension. Journal Of Pharmacology And Experimental Therapeutics 283 (2):619–624, 1997Google Scholar
  62. Macphee, C. H., Reifsnyder, D. H., Moore, T. A., Lerea, K. M., and Beavo, J. A.: Phosphorylation results in activation of a cAMP phosphodiesterase in human platelets. J Biol Chem 263 (21):10353–8, 1988Google Scholar
  63. Manganiello, V. C., Taira, M., Degerman, E., and Belfrage, P.: TYPE III CGMPINHIBITED CYCLIC NUCLEOTIDE PHOSPHODIESTERASES (PDE 3 GENE FAMILY) [Review]. Cellular Signalling 7 (5):445–455, 1995Google Scholar
  64. Manganiello, V. C., Tanaka, T., and Murashima, S.: Cyclic GMP-stimulated cyclic nucleotide phosphodiesterases. In Cyclic nucleotide phosphodiesterases: structure, regulation and drug action, ed. by J. Beavo and M. D. Houslay, vol. 2, pp 61–86, John Wiley & Sons, Chichester, 1990Google Scholar
  65. Martins, T. J., Mumby, M. C., and Beavo, J. A.: Purification and characterization of a cyclic GMP-stimulated cyclic nucleotide phosphodiesterase from bovine tissues. J Biol Chem 257:1973–1979, 1982Google Scholar
  66. Maurice, D. H., and Haslam, R. J.: Molecular basis of the synergistic inhibition of platelet function by nitrovasodilators and activators of adenylate cyclase: inhibition of cyclic AMP breakdown by cyclic GMP. Mol Pharmacol 37 (5):671–81, 1990Google Scholar
  67. McAllister, L. L. M., Sonnenburg, W. K., Kadlecek, A., Seger, D., Trong, H. L., Colbran, J. L., Thomas, M. K., Walsh, K. A., Francis, S. H., Corbin, J. D., and Beavo, J. A.: The structure of a bovine lung cGMP-binding, cGMP-specific phosphodiesterase deduced from a cDNA clone. J Biol Chem 268 (30):22863–73, 1993Google Scholar
  68. Mcphee, I., Pooley, L., Lobban, M., Bolger, G., and Houslay, M. D.: Identification, characterization and regional distribution in brain of rpde-6 (rnpde4a5), a novel splice variant of the pde4a cyclic amp phosphodiesterase family. Biochemical Journal, 1995Google Scholar
  69. Meacci, E., Taira, M., Moos, M. J., Smith, C. J., Movsesian, M. A., Degerman, E., Belfrage, P., and Manganiello, V.: Molecular cloning and expression of human myocardial cGMP-inhibited cAMP phosphodiesterase. Proc Natl Acad Sci U S A 89 (9):3721–5, 1992Google Scholar
  70. Mery, P. F., Lohmann, S. M., Walter, U., and Fischmeister, R.: Ca2+ current is regulated by cyclic GMP-dependent protein kinase in mammalian cardiac myocytes. Proc Natl Acad Sci U S A 88 (4):1197–201, 1991Google Scholar
  71. Mery, P. F., Pavoine, C., Pecker, F., and Fischmeister, R.: Erythro-9-(2-hydroxy-3-nonyl)adenine inhibits cyclic gmp-stimulated phosphodiesterase in isolated cardiac myocytes. Molecular Pharmacology 48 (1):121–130, 1995Google Scholar
  72. Michaeli, T., Bloom, T. J., Martins, T., Loughney, K., Ferguson, K., Riggs, M., Rodgers, L., Beavo, J. A., and Wigler, M.: Isolation and characterization of a previously undetected human cAMP phosphodiesterase by complementation of cAMP phosphodiesterase-deficient Saccharomyces cerevisiae. J Biol Chem 268 (17):12925–32, 1993Google Scholar
  73. Michie, A. M., Lobban, M., Muller, T., Harnett, M. M., and Houslay, M. D.: Rapid regulation of PDE-2 and PDE-4 cyclic AMP phosphodiesterase activity following ligation of the T cell antigen receptor on thymocytes: analysis using the selective inhibitors erythro-9-(2-hydroxy-3-nonyl)-adenine (EHNA) and rolipram. Cell Signal 8 (2):97–110, 1996Google Scholar
  74. Minami, N., Suzuki, Y., Yamamoto, M., Kihira, H., Imai, E., Wada, H., Kimura, Y., Ikeda, Y., Shiku, H., and Nishikawa, M.: Inhibition of shear stress-induced platelet aggregation by cilostazol, a specific inhibitor of cGMP-inhibited phosphodiesterase, in vitro and ex vivo. Life Sciences 61 (25), 1997Google Scholar
  75. Miot, F., Van, H. P. J., and Erneux, C.: Specificity of cGMP binding to a purified cGMP-stimulated phosphodiesterase from bovine adrenal tissue. Eur J Biochem 149 (1):59–65, 1985Google Scholar
  76. Moss, J., Manganiello, V. C., and Vaughan, M.: Substrate and effector specificity of a guanosine 3′: 5′-monophosphate phosphodiesterase from rat liver. J Biol Chem 252 (15):5211–5, 1977Google Scholar
  77. Murashima, S., Tanaka, T., Hockman, S., and Manganiello, V.: Characterization of particulate cyclic nucleotide phosphodiesterases from bovine brain: purification of a distinct cGMP-stimulated isoenzyme. Biochemistry 29 (22):5285–92, 1990Google Scholar
  78. Podzuweit, T., Nennstiel, P., and Muller, A.: Isozyme selective inhibition of cgmpstimulated cyclic nucleotide phosphodiesterases by erythro-9-(2-hydroxy-3-nonyl) adenine. Cellular Signalling 7 (7):733–738, 1995Google Scholar
  79. Pyne, N. J., Cooper, M. E., and Houslay, M. D.: Identification and characterization of both the cytosolic and particulate forms of cyclic GMP-stimulated cyclic AMP phosphodiesterase from rat liver. Biochem J 234:325–334, 1986Google Scholar
  80. Rascon, A., Degerman, E., Taira, M., Meacci, E., Smith, C. J., Manganiello, V., Belfrage, P., and Tornqvist, H.: Identification of the Phosphorylation Site in Vitro for cAMP-Dependent Protein Kinase on the Rat Adipocyte cGMP-Inhibited cAMP Phosphodiesterase. J Biol Chem 269 (16):11962–11966, 1994Google Scholar
  81. Reinhardt, R. R., and Bondy, C. A.: Differential cellular pattern of gene expression for two distinct cgmp-inhibited cyclic nucleotide phosphodiesterases in developing and mature rat brain. Neuroscience 72 (2):567–578, 1996Google Scholar
  82. Reinhardt, R. R., Chin, E., Zhou, J., Taira, M., Murata, T., Manganiello, V. C., and Bondy, C. A.: Distinctive anatomical patterns of gene expression for cgmpinhibited cyclic nucleotide phosphodiesterases. Journal of Clinical Investigation 95 (4):1528–1538, 1995Google Scholar
  83. Repaske, D. R., Corbin, J. G., Conti, M., and Goy, M. F.: A cyclic GMP-stimulated cyclic nucleotide phosphodiesterase gene is highly expressed in the limbic system of the rat brain. Neuroscience 56 (3):673–86, 1993Google Scholar
  84. Repaske, D. R., Swinnen, J. V., Jin, S. L., Van, W. J. J., and Conti, M.: A polymerase chain reaction strategy to identify and clone cyclic nucleotide phosphodiesterase cDNAs. Molecular cloning of the cDNA encoding the 63-kDa calmodulindependent phosphodiesterase. J Biol Chem 267 (26):18683–8, 1992Google Scholar
  85. Ressler, K. J., Sullivan, S. L., and Buck, L. B.: Information coding in the olfactory system: evidence for a stereotyped and highly organized epitope map in the olfactory bulb. Cell 79 (7):1245–55, 1994Google Scholar
  86. Ring, G., Mezza, R. C., and Schwob, J. E.: Immunohistochemical identification of discrete subsets of rat olfactory neurons and the glomeruli that they innervate. J Comp Neurol 388 (3):415–34, 1997Google Scholar
  87. RivetBastide, M., Vandecasteele, G., Hatem, S., Verde, I., Benardeau, A., Mercadier, J. J., and Fischmeister, R.: cGMP-stimulated cyclic nucleotide phosphodiesterase regulates the basal calcium current in human atrial myocytes. Journal Of Clinical Investigation 99 (11):2710–2718, 1997Google Scholar
  88. Rosman, G. J., Martins, T. J., Sonnenburg, W. K., Beavo, J. A., Ferguson, K., and Loughney, K.: Isolation and characterization of human cDNAs encoding a cGMP-stimulated 3′,5′-cyclic nucleotide phosphodiesterase. Gene 191 (1):89–95, 1997Google Scholar
  89. Rybalkin, S. D., Bornfeldt, K. E., Sonnenburg, W. K., Rybalkina, I. G., Kwak, K. S., Hanson, K., Krebs, E. G., and Beavo, J. A.: Calmodulin-stimulated cyclic nucleotide phosphodiesterase (PDE1C) is induced in human arterial smooth muscle cells of the synthetic, proliferative phenotype. Journal Of Clinical Investigation 100 (10):2611–2621, 1977Google Scholar
  90. Schlichter, D. J., Detre, J. A., Aswad, D. W., Chehrazi, B., and Greengard, P.: Localization of cyclic GMP-dependent protein kinase and substrate in mammalian cerebellum. Proc Natl Acad Sci U S A 77 (9):5537–41, 1980Google Scholar
  91. Sharma, R. K.: Phosphorylation and characterization of bovine heart calmodulin-dependent phosphodiesterase. Biochemistry 30 (24):5963–8, 1991Google Scholar
  92. Sharma, R. K., and Wang, J. H.: Purification and characterization of bovine lung calmodulin-dependent cyclic nucleotide phosphodiesterase. An enzyme containing calmodulin as a subunit. J Biol Chem 261:14160–14166, 1986Google Scholar
  93. Sharma, R. K., Wang, T. H., Wirch, E. H., and J. W.: Purification and properties of bovine brain calmodulin-dependent cyclic nucleotide phosphodiesterase. J. Biol. Chem. 255:5916–5923, 1980Google Scholar
  94. Shirayama, T., and Pappano, A. J.: Biphasic effects of intrapipette cyclic guanosine monophosphate on L-type calcium current and contraction of guinea pig ventricular myocytes. Journal Of Pharmacology And Experimental Therapeutics 279 (3):1274–1281, 1996Google Scholar
  95. Silva, W. I., and Puszkin, S.: Equilibrium kinetics model for the cGMP-stimulated phosphodiesterase of brain coated vesicles. Bol Asoc Med P R 82 (9):407–11, 1990Google Scholar
  96. Skimming, J. W., Demarco, V. G., Kadowitz, P. J., and Cassin, S.: Effects of zaprinast and dissolved nitric oxide on the pulmonary circulation of fetal sheep. Pediatric Research 39 (2):223–228, 1996Google Scholar
  97. Smith, C. J., Vasta, V., Degerman, E., Belfrage, P., and Manganiello, V. C.: Hormone-sensitive cyclic GMP-inhibited cyclic AMP phosphodiesterase in rat adipocytes. Regulation of insulin-and cAMP-dependent activation by phosphorylation. J Biol Chem 266 (20):13385–90, 1991Google Scholar
  98. Soderling, S. H., Bayuga, S. J., and Beavo, J. A.: Identification and Characterization of a Novel Family of Cyclic Nucleotide Phosphodiesterases. J. Bio. Chem. In Press, 1998Google Scholar
  99. Sonnenburg, W. K., Mullaney, P. J., and Beavo, J. A.: Molecular cloning of a cyclic GMP-stimulated cyclic nucleotide phosphodiesterase cDNA. Identification and distribution of isozyme variants. J Biol Chem 266 (26):17655–61, 1991Google Scholar
  100. Sonnenburg, W. K., Seger, D., and Beavo, J. A.: Molecular cloning of a cDNA encoding the “61-kDa” calmodulin-stimulated cyclic nucleotide phosphodiesterase. Tissue-specific expression of structurally related isoforms. J Biol Chem 268 (1):645–52, 1993Google Scholar
  101. Stroop, S. D., and Beavo, J. A.: Structure and function studies of the cGMP-stimulated phosphodiesterase. J Biol Chem 266 (35):23802–9, 1991Google Scholar
  102. Suttorp, N., Hippenstiel, S., Fuhrmann, M., Krull, M., and Podzuweit, T.: Role of nitric oxide and phosphodiesterase isoenzyme ii for reduction of endothelial hyperpermeability. American Journal of Physiology Cell Physiology 39 (3), 1996Google Scholar
  103. Taira, M., Hockman, S. C., Calvo, J. C., Taira, M., Belfrage, P., and Manganiello, V. C.: Molecular cloning of the rat adipocyte hormone-sensitive cyclic GMP-inhibited cyclic nucleotide phosphodiesterase. J Biol Chem 268 (25):18573–9, 1993Google Scholar
  104. Tang, K. M., Jang, E. K., and Haslam, R. J.: Expression and mutagenesis of the catalytic domain of cGMP-inhibited phosphodiesterase (PDE3) cloned from human platelets. Biochem J, 1997Google Scholar
  105. Teicher, M. H., Stewart, W. B., Kauer, J. S., and Shepherd, G. M.: Suckling pheromone stimulation of a modified glomerular region in the developing rat olfactory bulb revealed by the 2-deoxyglucose method. Brain Res 194 (2):530–5, 1980Google Scholar
  106. Thomas, M. K., Francis, S. H., and Corbin, J. D.: Characterization of a purified bovine lung cGMP-binding cGMP phosphodiesterase. J Biol Chem 265 (25):14964–70, 1990aGoogle Scholar
  107. Thomas, M. K., Francis, S. H., and Corbin, J. D.: Substrate-and kinase-directed regulation of phosphorylation of a cGMP-binding phosphodiesterase by cGMP. J Biol Chem 265 (25):14971–8, 1990bGoogle Scholar
  108. Trong, H. L., Beier, N., Sonnenburg, W. K., Stroop, S. D., Walsh, K. A., Beavo, J. A., and Charbonneau, H.: Amino acid sequence of the cyclic GMP stimulated cyclic nucleotide phosphodiesterase from bovine heart. Biochemistry 29 (44):10280–8, 1990Google Scholar
  109. Varriale, P., and Ramaprasad, S.: Short-term intravenous milrinone for severe congestive heart failure: the good, bad, and not so good. Pharmacotherapy 17 (2):371–4, 1997Google Scholar
  110. Vassar, R., Chao, S. K., Sitcheran, R., Nunez, J. M., Vosshall, L. B., and Axel, R.: Topographic organization of sensory projections to the olfactory bulb. Cell 79 (6):981–91, 1994Google Scholar
  111. Vemulapalli, S., Watkins, R. W., Chintala, M., Davis, H., Ahn, H. S., Fawzi, A., Tulshian, D., Chiu, P., Chatterjee, M., Lin, C. C., and Sybertz, E. J.: Antiplatelet and antiproliferative effects of SCH 51866, a novel type 1 and type 5 phosphodiesterase inhibitor. Journal Of Cardiovascular Pharmacology 28 (6):862–869, 1996Google Scholar
  112. Whalin, M. E., Strada, S. J., and Thompson, W. J.: Purification and partial characterization of membrane-associated type II (cGMP-activatable) cyclic nucleotide phosphodiesterase from rabbit brain. Biochim Biophys Acta 972 (1):79–94, 1988Google Scholar
  113. Whalin, M. W., Strada, S. J., Scammell, J. G., and Thompson, J. G.: Regulation of cAMP metabolism in PC12 cells by type II (cGMP-activatable) cyclic nucleotide phosphodiesterase. In Purines in Cellular Signaling Targets for New Drugs, ed. by J. W. D. Jacobson a. V. M. K.A. Jacobson, pp 323–328, Springer-Verlag, New York, 1990Google Scholar
  114. Yamamoto, T., Manganiello, V. C., and Vaughan, M.: Purification and characterization of cyclic GMP-stimulated cyclic nucleotide phosphodiesterase from calf liver. J Biol Chem 258:12526–12533, 1983Google Scholar
  115. Yan, C., Bentley, J. K., Sonnenburg, W. K., and Beavo, J. A.: Differential expression of the 61 kDa and 63 kDa calmodulin-dependent phosphodiesterases in the mouse brain. J. Neuroscience 14 (3):973–984, 1994Google Scholar
  116. Yan, C., Zhao, A. Z., Bentley, J. K., and Beavo, J. A.: The calmodulin-dependent phosphodiesterase gene pde1c encodes several functionally different splice variants in a tissue-specific manner. Journal of Biological Chemistry 271 (41):25699–25706, 1996Google Scholar
  117. Yan, C., Zhao, A. Z., Bentley, J. K., Loughney, K., Ferguson, K., and Beavo, J. A.: Molecular cloning and characterization of a calmodulin-dependent phosphodiesterase enriched in olfactory sensory neurons. Proc. Nat. Acad. Sci. U.S.A. 92 (21):9677–9681, 1995Google Scholar
  118. Yang, Q., Paskind, M., Bolger, G., Thompson, W. J., Repaske, D. R., Cutler, L. S., and Epstein, P. M.: A novel cyclic GMP stimulated phosphodiesterase from rat brain. Biochem. Biophys. Res. Comm. 205:1850–1858, 1994Google Scholar
  119. Yu, J., Wolda, S. L., Frazier, A. L. B., Florio, V. A., Martins, T. J., Snyder, P. B., Harris, E. A. S., McCaw, K. N., Farrell, C. A., Steiner, B., Bentley, J. K., Beavo, J. A., Ferguson, K., and Gelinas, R.: Identification and characterisation of a human calmodulin-stimulated phosphodiesterase PDE1B1. Cellular Signalling 9 (7):519–529, 1997Google Scholar
  120. Zhao, A. Z., Zhao, H., Teague, J., Fujimoto, W., and Beavo, J. A.: Attenuation of insulin secretion by insulin-like growth factor 1 is mediated through activation of phosphodiesterase 3B. Proceedings Of The National Academy Of Sciences Of The United States Of America 94 (7):3223–3228, 1997Google Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • D. M. Juilfs
    • 1
  • S. Soderling
    • 2
  • F. Burns
    • 2
  • J. A. Beavo
    • 2
  1. 1.Parke-Davis Pharmaceutical ResearchAnn Arbor
  2. 2.Department of PharmacologyUniversity of WashingtonSeattle

Personalised recommendations