Identification of DFA: Data-dependent versus data-independent algorithms

  • C. de la Higuera
  • J. Oncina
  • E. Vidal
Session: Operational Issues
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1147)


Algorithms that infer deterministic finite automata from given data and that comply with the identification in the limit condition have been thoroughly tested and are in practice often preferred to elaborate heuristics. Even if there is no guarantee of identification from the available data, the existence of associated characteristic sets means that these algorithms converge towards the correct solution. In this paper we construct a framework for algorithms with this property, and consider algorithms that use the quantity of information to direct their strategy. These data dependent algorithms still identify in the limit but may require an exponential characteristic set to do so. Nevertheless preliminary practical evidence suggests that they could perform better.


DFA grammatical inference identification in the limit 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A87]
    Angluin D. (1987). Queries and concept learning. Machine Learning 2, 319–342.Google Scholar
  2. [DMV94]
    Dupont P., Miclet L. & Vidal E. (1994). What is the search space of the regular inference? Proceedings of the International Colloquium on Grammatical Inference ICGI-94 (pp. 25–37). Lecture Notes in Artificial Intelligence 862, Springer-Verlag. Edited by R. Carrasco and J. Oncina.Google Scholar
  3. [D94]
    Dupont P. (1994). Regular Grammatical Inference from positive and negative samples by genetic search: the GIG method. Proceedings of the International Colloquium on Grammatical Inference ICGI-94 (pp. 236–245).Springer-Verlag Series in Artificial Intelligence 862. Edited by R. Carasco and J. Oncina.Google Scholar
  4. [G67]
    Gold E.M. (1967). Language identification in the limit. Inform.&Control. 10, 447–474.Google Scholar
  5. [G78]
    Gold E.M. (1978). Complexity of Automaton Identification from given Data. Information and Control 37, 302–320.CrossRefGoogle Scholar
  6. [H78]
    Harrison M.A. (1978). Introduction to Formal Language Theory. Reading: Addison-Wesley.Google Scholar
  7. [H95]
    de la Higuera C. (1995). Characteristic sets for Grammatical Inference. In Proceedings of the International Colloquium on Grammatical Inference ICGI-96.Google Scholar
  8. [KMT95]
    Koshiba, T., Mäkinen, E. & Takada, Y. (1995). Learning Deterministic Even Linear Languages from Positive Examples. Proceedings of ALT'95, Lecture Notes in Artificial Intelligence 997, Springer-Verlag.Google Scholar
  9. [L92]
    Lang K.J. (1992). Random DFA's can be approximately Learned from Sparse Uniform Examples, Proceedings of COLT 1992, pp 45–52.Google Scholar
  10. [MG94]
    Miclet L. & de Gentile C. Inférence Grammaticale à partir d'Exemples et de Contre-exemples: deux algorithmes optimaux (BIG et RIG) et une version Heuristique (BRIG), Actes des JFA-94, Strasbourg, France, pp. F1–F13,1994.Google Scholar
  11. [OG92]
    Oncina J. & García P. (1992) Inferring Regular Languages in Polynomial Updated Time. In Pattern Recognition and Image Analysis, World Scientific (49–61).Google Scholar
  12. [OGV93]
    Oncina J., García P. & Vidal E. (1993). Learning subsequential transducers for pattern recognition tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence 15, 448–458.CrossRefGoogle Scholar
  13. [P89]
    Pitt, L. (1989). Inductive inference, dfas and computational complexity. Proceedings of the International Workshop on Analogical and Inductive Inference (pp. 18–44). Lecture Notes in Artificial Intelligence 397, Springer-Verlag.Google Scholar
  14. [SG94]
    Sempere J.M. & García P. (1994). A characterisation of Even Linear Languages and its application to the Learning Problem. Proceedings of the International Colloquium on Grammatical Inference ICGI-94 (pp. 38–44). Lecture Notes in Artificial Intelligence 862, Springer-Verlag.Google Scholar
  15. [S92]
    Sakakibara Y. (1992). Efficient Learning of Context-free Grammars from Positive Structural Examples. Inf. and Comp. 97, 23–60.CrossRefGoogle Scholar
  16. [T88]
    Takada Y. (1988). Grammatical inference for even Linear languages based on control sets. Information Processing Letters 28, 193–199.CrossRefGoogle Scholar
  17. [T94]
    Takada Y. (1994). A Hierarchy of Language Families Learnable by Regular Language Learners. Proceedings of the International Colloquium on Grammatical Inference ICGI-94 (pp. 16–24). Lecture Notes in Artificial Intelligence 862, Springer-Verlag.Google Scholar
  18. [T82]
    Tomita M. (1982). Dynamic construction of Finite Automata from Examples Using Hill Climbing, Proc. of the 4th annual Cognitive Science Conference, USA, pp. 105–108.Google Scholar
  19. [TB73]
    Trakhenbrot B. & Barzdin Y.(1973). Finite automata: Behavior and Synthesis. North Holland Pub., Amsterdam.Google Scholar
  20. [Y93]
    Yokomori T. (1993). Learning non deterministic Finite Automata from queries and Counterexamples. Machine Intelligence 13. Furukawa, Michie & Muggleton eds., Oxford Univ. Press.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • C. de la Higuera
    • 1
  • J. Oncina
    • 2
  • E. Vidal
    • 3
  1. 1.LIRMMMontpellier Cedex 5France
  2. 2.Dpto. Lenguajes y Sistemas InformáticosUniversidad de AlicanteAlicanteSpain
  3. 3.Dpto. Sistemas Informáticos y ComputaciónUniversidad Politécnica de ValenciaValenciaSpain

Personalised recommendations