On pseudo-resultants

  • Michael Rothstein
Solution Of Equations
Part of the Lecture Notes in Computer Science book series (LNCS, volume 174)


Given an integral domain D and an indeterminate X over D, there exist many functionals mapping D[X]×D[X] into D that are similar to the resultant. If D is a Unique Factorization Domain, a specific functional, called the “minimal resultant”, could be useful in many places where a resultant would be required, and also for solving certain Diophantine Equations.

Key words

resultants Sylvester Matrix commutative algebra Unique Factorization Domains P-adic Methods 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BCL 82]
    Buchberger, B., Collins, G. E. and Loos, R. editors, Computer Algebra, Symbolic and Algebraic Computation Springer-Verlag, Vienna, 1982, pages 173–188.Google Scholar
  2. [Col 67]
    Collins, G. E. “Subresultants and Reduced Polynomial Remainder Sequences” ACM Journal, January 1967, Vol 14 Nr. 1Google Scholar
  3. [Col 71]
    — “The Calculation of Multivariate Polynomial Resultants” ACM Journal, October 1971, Vol 18 Nr. 4Google Scholar
  4. [Gri 78]
    Griss, Martin L. “Using an Efficient Sparse Minor Expansion Algorithm to Compute Polynomial Subresultants and GCD” IEEE Transactions on Computing, C-27 (1978), 945–950.Google Scholar
  5. [Her 64]
    Herstein, I. N. Topics in Algebra Blaisdell Publishing Co. Waltham, Mass, 1964Google Scholar
  6. [Knu 69]
    Knuth, Donald E. The Art of Computer Programming Volume 2/Seminumerical Algorithms, Addison-Wesley Publishing Co., Reading, Mass., 1969.Google Scholar
  7. [KuA 69]
    Ku, S. Y. and Adler, R. J. “Computing Polynomial Resultants: Bezout's Determinant vs Collins' Reduced PRS Algorithm” CACM Vol 23 Nr 12 (Dec 1969)Google Scholar
  8. [LAU 83]
    Lauer, Markus “generalized p-Adic Constructions” SIAM J. Computing Vol 12 Nr 2, (May 1983), 395–410.Google Scholar
  9. [LoC 73]
    Loos P and Collins, G. E. “Resultant Algorithms for Exact Arithmetic on Algebraic Numbers” Paper presented at SIAM 1973 Natl Mtg, Hampton, Va.Google Scholar
  10. [Mio 82]
    Miola, Alfonso M. “The Conversion of Hensel Codes to their Rational Equivalents (or how to solve the Gregory's open problem)” SIGSAM Bulletin Number 64 (Vol 16 Number 4, November 1982)Google Scholar
  11. [Rot 76]
    Rothstein, M Aspects of Symbolic Integration and Simplification of Exponential and Primitive Functions Ph D Thesis, University of Wisconsin, Madison, 1976, (114 pages) Available from University Microfilms.Google Scholar
  12. [VdW 71]
    van der Waerden B L, Algebra I, Heidelberger Taschenbucher Nr 12, Springer-Verlag, Berlin, 1971 (German)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • Michael Rothstein
    • 1
  1. 1.Dept. of Mathematical SciencesKent State UniversityKent

Personalised recommendations