Approximation by continued fraction of a polynomial real root

  • Klaus Thull
Solution Of Equations
Part of the Lecture Notes in Computer Science book series (LNCS, volume 174)


A new algorithm is presented which by experiment has proven to be faster by a factor of 3–4 than Newton's algorithm, and faster, too, than the stepwise approach used until now.


polynomials algebraic numbers continued fraction rational linear substitution approximation real roots 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Akritas, A.G.: Exact Algorithms for Polynomial Real Root Approximation Using Continued Fractions, Computing 30 (1983) pp. 63–76.Google Scholar
  2. [2]
    Lagrange, J.L.: Traité de la Résolution des Équations Numériques, (Paris, 1778).Google Scholar
  3. [3]
    Vincent, A.J.H.: Sur la Résolution des Équations Numériques, Journal de Mathématiques Pures et Appliquées 1 (1836) pp. 341–371.Google Scholar
  4. [4]
    Uspenski, J.V.: Theory of Equations, McGraw-Hill (New York, 1948).Google Scholar
  5. [5]
    Perron, O.: Die Lehre von den Kettenbrüchen, vol I, Teubner (Stuttgart, 1977).Google Scholar
  6. [6]
    Heffter, L.: Grundlagen und analytischer Aufbau der Geometrie, Teubner (Stuttgart, 1958).Google Scholar
  7. [7]
    Kneser, H.: Funktionentheorie, Vandenhoek & Ruprecht (Göttingen, 1966).Google Scholar
  8. [8]
    Obreschkoff, N.: Verteilung und Berechnung der Nullstellen reeller Polynome, VEB Deutscher Verlag der Wissenschaften (Berlin, 1963) pp. 48–87.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • Klaus Thull
    • 1
  1. 1.Heidelberg

Personalised recommendations