Computations with rational subsets of confluent groups

  • Robert H. Gilman
Computational Group Theory
Part of the Lecture Notes in Computer Science book series (LNCS, volume 174)


Various problems involving rational subsets of finitely generated free groups can be solved efficiently using a technique related to coset enumeration. We investigate the extension of this method to other finitely generated groups.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.V. Anisimov, Languages over free groups, Springer Lecture Notes in Computer Science 32 1975, 167–171.Google Scholar
  2. 2.
    A.V. Anisimov, to appear.Google Scholar
  3. 3.
    R.V. Book, The power of the Church-Rosser property for string rewriting systems, 6th Conf. on Automated Deduction, New York, 1982, Springer Lecture Notes in Computer Science 138 1982, 360–368.Google Scholar
  4. 4.
    R.V. Book, M. Jantzen and C. Wrathall, Monadic Thue systems, Theor. Comp. Sci. 19 1982, 231–251.Google Scholar
  5. 5.
    H. Bucken, Anwendung von Reduktionssysteme auf das Wort-problem in der Gruppentheorie, Dissertation, Aachen 1979.Google Scholar
  6. 6.
    S. Eilenberg and M.P. Schutzenberger, Rational sets in commutative monoids, J. Alg. 13 1969, 173–191.Google Scholar
  7. 7.
    R. Gilman, Presentations of groups and monoids, J. Alg. 57 1979, 544–554.Google Scholar
  8. 8.
    P. Johansen, Free groups and regular expressions, ACM Symposium on Theory of Computing, May 5–7, 1969, Marina del Rey, CA., 113–128.Google Scholar
  9. 9.
    D.E. Knuth and P.B. Bendix, Simple word problems in universal algebras, in "Computational Problems in Abstract Algebra", J. Leech ed., Pergamon Pr., Oxford 1970, 263–297.Google Scholar
  10. 10.
    R.C. Lyndon and P.E. Schupp, "Combinatorial Group Theory", Springer Verlag, Berlin 1977.Google Scholar
  11. 11.
    K.A. Mihailova, The occurrence problem for direct products of groups, Mat. Sb. (N.S.) 70 (112) 1966, 241–251.Google Scholar
  12. 12.
    D.E. Muller and P.E. Schupp, Context-free languages, groups, the theory of ends, second order logic, tiling problems, cellular automata, and vector addition systems, Bull. A.M.S. (N.S.) 4 1981, 331–334.Google Scholar
  13. 13.
    C. Sims, Lecture given at Symposium on Computational Group Theory, Durham 1982.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • Robert H. Gilman
    • 1
  1. 1.Department of Pure and Applied MathematicsStevens Institute of TechnologyHoboken

Personalised recommendations