Symbolic computation and the Dirichlet problem

  • Ralph W. Wilkerson
Applications 1
Part of the Lecture Notes in Computer Science book series (LNCS, volume 174)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Bergmann, Uber die Entwicklung der harmonischen Funktionen der Ebene und des Raumes nach Orthogonalfunktionen, Math. Annalen, 86 (1922), 238–271.Google Scholar
  2. 2.
    D. J. Jones and J. C. Smith, Application of the method of lines to the solution of elliptic partial differential equations (National Research Council of Canada, Ottawa 1979).Google Scholar
  3. 3.
    A. I. Markushevich, Theory of functions of a complex variable (Chelsea, New York, 1977)Google Scholar
  4. 4.
    Z. Nehari, On the numerical solution of the Dirichlet problem, Proceedings of the conference on differential equations held at the University of Maryland (1955), 157–178.Google Scholar
  5. 5.
    J. Walsh, The approximation of harmonic functions by harmonic polynomials and by harmonic rational functions, Amer. Math. Soc. Bulletin, 35 (1929), 499–544.Google Scholar
  6. 6.
    S. Zaremba, L'equation biharmonique et une classe remarquable de fonctions fondementales harmoniques, Bulletin International de l'Academie des Sciences de Cracovie (1907), 147–196.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • Ralph W. Wilkerson
    • 1
  1. 1.Department of Computer and Information SciencesUniversity of FloridaGainesville

Personalised recommendations