An experiment toward a general quadrature for second order linear ordinary differential equations by symbolic computation

  • Shunro Watanabe
Differential Equations
Part of the Lecture Notes in Computer Science book series (LNCS, volume 174)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  1. 1.
    A.Forsyth, "Theory of Differential Equations vol.IV", Dover, (1960).Google Scholar
  2. 2.
    E.Lafferty, "Hypergeometric Reduction-An Adventure in Pattern Matching", Proc. 1979 MACSYMA User Conf, pp.465–481.Google Scholar
  3. 3.
    Y. Avgoustis, "Symbolic Laplace Transforms of Special Functions", Proc. 1979 MACSYMA User Conf. pp.21–40.Google Scholar
  4. 4.
    B.Saunders, "An Implementation of Kovacic's algorithm for solving second order linear homogeneous differential equations", Proc. ACM Symp. SYMSAC'81, pp.105–108.Google Scholar
  5. 5.
    M. Singer, "Liouvillian Solutions of n-th Order Homogeneous Linear Differential Equations", Amer.J.Math. vol.103,no.4, 1980, pp.661–682.Google Scholar
  6. 6.
    R.Pavelle, M.Rothstein, J.Fitch, "Computer Algebra", Scientific American, Dec. 1981, pp.136–146, 151–152.Google Scholar
  7. 7.
    E.Kamke, "Differential Gleichungen-Lösungsmethoden und Lösungen", Chelsea, (1959).Google Scholar
  8. 8.
    J.Della Dora, E.Tournier, "Formal Solutions of Differential Equations in the Neighbourhood of Singular Points", Proc. ACM Symp. SYMSAC'81, pp.25–29.Google Scholar
  9. 9.
    S.Watanabe, "A Technique for Solving Ordinary Differential Equations Using Riemann's P-functions", Proc. ACM Symp. SYMSAC'81, pp.36–43.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • Shunro Watanabe
    • 1
  1. 1.Department of MathematicsTsuda CollegeKodaira, TokyoJapan

Personalised recommendations