Advertisement

Abstract interpretation: A theory of approximate computation

  • Kim Marriott
Invited Tutorials
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1302)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Abramsky. Abstract Interpretation, Logical Relations and Kan Extensions. Journal of Logic and Computation, 1(1): 5–40, 1990.Google Scholar
  2. 2.
    G. Burn, C. Hankin and S. Abramsky. Strictness analysis for higher order functions. Science of Computer Programming 7:249–278, 1986.Google Scholar
  3. 3.
    Y. Caseau. Abstract interpretation of constraints on order-sorted domains. In Proc of the 1991 Int. Symp. on Logic Programming, pages 435–452. MIT Press, 1991.Google Scholar
  4. 4.
    P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In Proc. Fourth Ann. ACM Symp. Principles of Programming Languages, pages 238–252. Los Angeles, California, 1977.Google Scholar
  5. 5.
    P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In Proc. Sixth Ann. ACM Symp. Principles of Programming Languages, pages 269–282. San Antonio, Texas, 1979.Google Scholar
  6. 6.
    P. Cousot and R. Cousot. Inductive definitions, semantics and abstract interpretation. In Proc. Ninetenth Ann. ACM Symp. Principles of Programming Languages, pages 83–94. Alberquerque, NM, 1992.Google Scholar
  7. 7.
    P. Cousot and R. Cousot. Abstract Interpretation Frameworks. Journal of Logic and Computation, 2(4):511–547, 1992.Google Scholar
  8. 8.
    M. Garcia de la Banda, K. Marriott, and P. Stuckey. Efficient analysis of logic programs with dynamic scheduling. International Symposium on Logic Programming, pages 417–431. MIT Press. Portland, USA. Dec 1995.Google Scholar
  9. 9.
    F. Giunchiglia and T. Walsh. Abstract theorem proving. Proc. Int. Joint Conf. Artificial Intelligence-89, pages 372–377, Detroit, Michigan, 1989.Google Scholar
  10. 10.
    R. Helm, K. Marriott and M. Odersky. Spatial query optimization: From Boolean constraints to range queries. Journal of Computer and System Science 51 (2): 197–210, 1995.Google Scholar
  11. 11.
    R. E. Korf. Toward a model of representation changes. Artificial Intelligence 14:41–78, 1980.Google Scholar
  12. 12.
    R. E. Korf. Planning as search: A quantitative approach. Artificial Intelligence 33: 65–88, 1987.Google Scholar
  13. 13.
    K. Marriott. Frameworks for abstract interpretation. Acta Informatica 30, 103–129, 1993.Google Scholar
  14. 14.
    K. Marriott, M. Garcia de la Banda and M. Hermenegildo. Analyzing logic programs with dynamic scheduling. Proc. 21st ACM Symp. Principles of Programming Languages, pages 240–253. Portland, USA. ACM Press, 1994.Google Scholar
  15. 15.
    K. Marriott and H. Søndergaard. Bottom-up dataflow analysis of normal logic programs. Journal of Logic Programming, pp. 181–204, 1992.Google Scholar
  16. 16.
    K. Marriott and H. Søndergaard. Analysis of constraint logic programs. In S. Debray and M. Hermenegildo, editors, Logic Programming: Proc. 1990 North American Conf., pages 531–547. Austin, USA. MIT Press, 1990.Google Scholar
  17. 17.
    K. Marriott, H. Søndergaard and N. D. Jones. Denotational abstract interpretation of logic programs. ACM Trans. Programming Languages and Systems 16 (3): 607–648, 1994.Google Scholar
  18. 18.
    K. Marriott and P. Stuckey. Approximating possible interaction between linear arithmetic constraints. International Symposium on Logic Programming, pages 558–71. MIT Press. Ithaca, USA. Nov. 1994.Google Scholar
  19. 19.
    A. Mycroft and N.D. Jones. A relational framework for abstract interpretation. In H. Ganzinger and N. D. Jones, editors, Programs as Data Objects (Lecture Notes in Computer Science 217), pages 536–547. Springer-Verlag, 1986.Google Scholar
  20. 20.
    P. Naur. The design of the Gier Algol compiler, part II. BIT 3: 145–166, 1963.Google Scholar
  21. 21.
    F. Nielson. A denotational framework for data flow analysis. Acta Informatica 18, pp. 265–287, 1982.Google Scholar
  22. 22.
    F. Nielson. Strictness analysis and denotational abstract interpretation. Information and Computation 76 (1): 29–92, 1988.Google Scholar
  23. 23.
    F. Nielson. Two level semantics and abstract interpretation. Theoretical Computer Science — Fund. Studies 69 117–242, 1989.Google Scholar
  24. 24.
    F. Nielson. Semantics-directed program analysis: A tool-maker's perspective. SAS'96, Springer-Verlag, LNCS 1145, pp. 2–21, 1996.Google Scholar
  25. 25.
    D. Plaisted. Abstraction mappings in mechanical theorem proving. W. Bibel and R. Kowalski, editors, Fifth Conf. on Automated Deduction, pages 264–280, (Lecture Notes in Computer Science 87), Springer Verlag, 1980.Google Scholar
  26. 26.
    D. Plaisted. Theorem proving with abstraction. Artificial Intelligence 16: 47–108, 1981.Google Scholar
  27. 27.
    D. Plaisted. The occur-check problem in Prolog. New Generation Computing 2 (4) 309–322, 1984.Google Scholar
  28. 28.
    J. C. Reynolds. Automatic computation of data set definitions. In A. Morrell, editor, Information Processing 68, pages 456–461. North-Holland, 1969.Google Scholar
  29. 29.
    J. C. Reynolds. On the relation between direct and continuation semantics. In J. Loeckx, editor, Proc. Second Int. Coll. Automata, Languages and Programming (Lecture Notes in Computer Science 14), pages 141–156. Springer-Verlag, 1974.Google Scholar
  30. 30.
    E. D. Sacerdoti. Planning in a hierarchy of abstraction spaces. Artificial Intelligence 5: 115–135, 1974.Google Scholar
  31. 31.
    M. Sintzoff. Calculating Properties of Programs by Valuation on Specific Models. SIGPLAN Notices 7 (1): 203–207, 1972. Proc. ACM Conf. Proving Assertions about Programs.Google Scholar
  32. 32.
    D. Weld and J. de Kleer (editors), Readings in Qualitative Reasoning about Physical Systems, Morgan Kaufmann Publisher, 1990.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Kim Marriott
    • 1
  1. 1.Department of Computer ScienceMonash UniversityClaytonAustralia

Personalised recommendations