A genetic approach to computing Independent And Parallelism in logic programs

  • Camino R. Vela
  • Cesar Alonso
  • Ramiro Varela
  • Jorge Puente
Complex Systems Dynamics
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1240)


In this paper we face the problem of determining the best partial order among the subgoals of a query in order for this query to be evaluated under Independent AND Parallelism. This is the most common source of parallelism exploited by the different models that have been proposed to evaluate logic programs in parallel. This problem is proved to be NP-hard, so every model utilises its own heuristic strategy in order to estimate the best ordering. Here, a Genetic approach is proposed and compared to conventional heuristic ones. The experimental results show that the Genetic Algorithm produces better solutions, as well as comparable execution times for reasonably sized problems.


Parallel Logic Programming Independent AND Parallelism Genetic Algorithms Evolutive Optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Con83]
    Conery, J. S. The AND/OR Process Model for Parallel Interpretation of Logic Programs. Ph. D. Th.. Dpto. Inf. and Comp. Science. Univ. California. Irvine. 1983Google Scholar
  2. [DeG84]
    DeGroot, D. Restricted AND-Parallelism. Procs. of the Int. Conf. on Fifth Generation Comp. Systems. North Holland. pp. 471–478. 1984.Google Scholar
  3. [Del89]
    Delcher, A. and Kasif, S. Some Result on the Complexity of Exploiting Data Dependency in Parallel Logic Programs. JLP, Vol. 6, pp. 229–241. 1989.Google Scholar
  4. [Gol89]
    Goldberg, D. E. Genetic Algorithms in Search, Optimization & Machine Learning Addison-Wesley, 1989.Google Scholar
  5. [Kal91]
    Kalé, L. V. The REDUCE-OR Process Model for Parallel Interpretation of Logic Programs. The Journal of Logic Prog.. Vol 11, pp. 55–84. 1991Google Scholar
  6. [Law91]
    Lawrence, D. Handbook of Genetic Algorithms. Van Nostrand Reinhold, 1991.Google Scholar
  7. [Mar95]
    Marín, F. J.; Sandoval, F. Diseño de Redes Neuronales Artificiales Mediante Algoritmos Genéticos. Computación Neuronal. Ed: Senén Barro y José Mira, Universidad de Santiago, pp 385–424. 1995.Google Scholar
  8. [Mic94]
    Michalewicz, Z. Genetic Algorithms+Data Structures=Evolution Programs. Second, Etended Edition, Springer-Verlag. 1994.Google Scholar
  9. [Mut90]
    Muthukumar, K. and Hermenegildo, M. The CDG, UDG, and MEL Methods for Automatic Compile-Time Parallelization of Logic Programs for Independent And-Parallelism. ICLP'90, pp. 221–237. MIT Press, Jun. 1990.Google Scholar
  10. [Rie96]
    Riesco Peláez, F. Optimization of the Initial Generation In the Solving of the Travelling Salesman Problem with a Genetic Algorithm. (ITHURS' 96), pp. 161–167. 1996.Google Scholar
  11. [Var94]
    Varela, R. El Modelo RPS para la Gestión del Paralelismo AND Independiente en Programas Lógicos. Proceedings of the 1994 Joint Conf. on Declarative GULP_PRODE'94, pp. 251–265. 1994.Google Scholar
  12. [Var95a]
    Varela, R., Sierra, E., Jiménez L. y Vela, C. R. Combinación de Soluciones Parciales en Programación Lógica Paralela. C-AEPIA'95. Alicante. 1995.Google Scholar
  13. [Var95b]
    Varela, R. Un Modelo para el Cálculo Paralelo de Deducciones en Lógica de Predicados. Tesis Doctoral. Dpto. de Matemáticas, Univ. Oviedo. 1995.Google Scholar
  14. [Var96a]
    Varela, R. and Vela, C. R. AND/OR Trees for Parallel Deductions, ITHURS'96. León, Spain. July 1996.Google Scholar
  15. [Var96b]
    Varela, R.; Vela, C. R. and Puente, J. Efficient Producer/Consumer Parallelism in Logic Programming. APPIA-GULP-PRODE'96. San Sebastian. July 1996.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Camino R. Vela
    • 1
  • Cesar Alonso
    • 1
  • Ramiro Varela
    • 1
  • Jorge Puente
    • 1
  1. 1.Artificial Intelligence CentreUniversity of Oviedo at GijónGijónSpain

Personalised recommendations