A new approach to maximum matching in general graphs

  • Norbert Blum
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 443)


We reduce the problem of finding an augmenting path in a general graph to a reachability problem and show that a slight modification of depth-first search leads to an algorithm for finding such paths. As a consequence, we obtain a straightforward algorithm for maximum matching in general graphs of time complexity O(√nm), where n is the number of nodes and m is the number of edges in the graph.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Aho A. V., Hopcroft J. E, Ullman J. D: The Design and Analysis of Computer Algorithms, Addison-Wesley, 1974, 187–189.Google Scholar
  2. [2]
    Balinski M. L.: Labelling to Obtain a Maximum Matching, in Combinatorial Mathematics and its Applications (R. C. Bose and T. A. Dowling, eds.), University of North Carolina Press, Chapel Hill, 1969, 585–602.Google Scholar
  3. [3]
    Bartnik G.W.: Algorithmes de couplages dans les graphes, Thése Doctorat 3e cycle, Université Paris VI,1978.Google Scholar
  4. [4]
    Berge C.: Two Theorems in Graph Theory, Proc. Nat. Acad. Sci. U.S.A., 43 (1957), 449–844.Google Scholar
  5. [5]
    Blum N.: A New Approach to Maximum Matching in General Graphs, Report No. 8546-CS, Institut für Informatik der Universität Bonn, Mai 1990.Google Scholar
  6. [6]
    Edmonds J.: Paths, Trees and Flowers, Canad. J. Math, 17 (1965), 449–467.Google Scholar
  7. [7]
    Even S, Kariv O.: An O(n 2.5) Algorithm for Maximum Matching in General Graphs, FOCS, 16 (1975), 100–112.Google Scholar
  8. [8]
    Gabow H. N.: An Efficient Implementation of Edmond's Algorithm for Maximum Matching on Graph, J. ACM, 1976, 221–234.Google Scholar
  9. [9]
    Gabow H. N., Tarjan R. E.: A Linear-time Algorithm for a Special Case of Disjoint Set Union, J. Comput. Syst. Sci., 1985, 209–221.Google Scholar
  10. [10]
    Galil Z.: Efficient Algorithms for Finding Maximum Matching in Graphs, Computing Surveys, 1986, 23–38.Google Scholar
  11. [11]
    Gondran M., Minoux M.: Graphs and Algorithms, Wiley & Sons, 1984, 283–284.Google Scholar
  12. [12]
    Hopcroft J. E., Karp R. M.: An n 5/2 Algorithm for Maximum Matching in Bipartite Graphs, SIAM J. Comput., 1973, 225–231.Google Scholar
  13. [13]
    Kariv O.: An O(n 2.5) Algorithm for Maximum Matching in General Graphs, Ph.D. thesis, Dept. of Applied Mathematics, Weizmann Institute of Science, Rehovort, Israel, 1976.Google Scholar
  14. [14]
    Lawler E.: Combinatorial Optimization, Networks and Matroids, Holt, Rinehart and Winston, 1976.Google Scholar
  15. [15]
    Micali S., Vazirani V. V.: An O(√|V| · |E|) Algorithm for Finding Maximum Matching in General Graphs, FOCS, 21 (1980), 12–27.Google Scholar
  16. [16]
    Papadimitriou C. H., Steiglitz K.: Combinatorial Optimization, Algorithms and Complexity, Prentice-Hall, 1982.Google Scholar
  17. [17]
    Peterson P. A., Loui M. C.: The General Matching Algorithm of Micali and Vazirani, Algorithmica, 1988, 511–533.Google Scholar
  18. [18]
    Tarjan J. E.: Data Structures and Network Algorithms, SIAM, 1983.Google Scholar
  19. [19]
    Vazirani V. V.: A Theory of Alternating Paths and Blossoms for Proving Correctness of the O(√V E) General Graph Matching Algorithm, TR 89-1035, Dept. of Computer Science, Cornell University, Sept. 1989.Google Scholar
  20. [20]
    Witzgall C., Zahn C. T. Jr.: Modification of Edmond's Maximum Matching Algorithm, J. Res. Nat. Bur. Standards, 69 B (1965), 91–98.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Norbert Blum
    • 1
  1. 1.Informatik IVUniversität BonnBonnWest Germany

Personalised recommendations