Boolean closure and unambiguity of rational sets

  • Maryse Pelletier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 443)


We consider three properties that can be verified by the rational subsets of a monoid M: to coincide with the recognizable subsets of M, to coincide with the unambiguous rational subsets of M, to form a boolean algebra. We study what connections exist between these properties. We build a monoid in which rational subsets are recognizable (and thus form a boolean algebra), but are not all unambiguous and a monoid in which rational subsets are unambiguous but do not form a boolean algebra. We show that the class of monoids the rational subsets of which are recognizable and unambiguous is not closed by finitely generated submonoids.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Amar V. and Puzolu G. (1965), “Generalizations of regular events”, Information and Control 8, 56–63.Google Scholar
  2. [2]
    Benois M. (1969), “Parties rationnelles du groupe libre”, C.R. Acad. Sci. Paris, Ser. A 269, 1188–1190.Google Scholar
  3. [3]
    Berstel J. (1979), “Transductions and Context-free Languages”, Teubner, Stuttgart.Google Scholar
  4. [4]
    Choffrut Ch. (1978), “Contribution à l'étude de quelques familles remarquables de fonctions rationnelles”, Thèse Sci. math., Univ. Paris 6, Paris.Google Scholar
  5. [5]
    Conway J.H. (1971), “Regular Algebra and Finite Machines”, Chapman and Hall.Google Scholar
  6. [6]
    Eilenberg S. (1974), “Automata, Languages and Machines”, Vol. A, Academic Press, New York.Google Scholar
  7. [7]
    Eilenberg S., Schützenberger M.P. (1969), “Rational sets in commutative monoids”, Journal of Algebra, 13, 173–191.Google Scholar
  8. [8]
    Johnson J.H. (1985), “Do Rational Equivalence Relations have Regular Cross-Sections?”, Proc. of the 12th International Conf. on Automata, Languages, and Programming, Springer-Verlag LNCS 194 300–309.Google Scholar
  9. [9]
    McKnight J. D., Jr. and Storey A. J. (1969), “Equidivisible semigroups”, Journal of Algebra, 12, 24–48.Google Scholar
  10. [10]
    Pelletier M. (1989), “Descriptions de semigroupes par automates”, Thèse de l'Université Paris 6.Google Scholar
  11. [11]
    Pelletier M., Sakarovitch J. (1988), “Easy multiplications II, Extensions of rational semigroups”, Rapport LITP Univ. Paris 6, 88–63, to appear in Information and Computation (1990).Google Scholar
  12. [12]
    Sakarovitch J. (1981), “Description des monoïdes de type fini”, EIK, 17, 417–434.Google Scholar
  13. [13]
    Sakarovitch J. (1987), Easy Multiplications. I. The Realm of Kleene's Theorem, Information and Computation, Vol. 74, No. 3, 173–197.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Maryse Pelletier
    • 1
  1. 1.LITP, Université Paris 6Paris Cedex 05France

Personalised recommendations