Advertisement

Generic terms having no polymorphic types

  • Sophie Malecki
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 443)

Abstract

We define a set ς2 of lambda-terms for which we decide typing in system F.

As the algorithm uses normalizability in an essential way, we also characterize normalizable terms in ς2. This allows us to connect the two properties and to build many non-typable terms, normalizable or not.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. Damas and R. Milner. The Principal Type Schemes for Functional Programs. In Symposium on Principles of Programming Languages, ACM, 1982.Google Scholar
  2. [2]
    P. Giannini, F. Honsel, S. Ronchi Della Rocca. A strongly normalizing term having no type in the system F (second order calculus). Rapporto Interno, Dipartemento di Informatica, Torino, 1987.Google Scholar
  3. [3]
    P. Giannini, F. Honsel, S. Ronchi Della Rocca. Characterization of typings in polymorphic type discipline. L.I.C.S. 88.Google Scholar
  4. [4]
    J.-Y. Girard. Une extension de l'interprétation de Gödel à l'analyse et son application à l'élimination des coupures dans l'analyse et la théorie des types. (P 0604) Scand Logic Symposium, 1971.Google Scholar
  5. [5]
    J.L. Krivine. Un algorithme non typable dans le système F. C.R. Acad. SC. Paris, t 304, série 1(5), 1987.Google Scholar
  6. [6]
    P. Le Chenadec. On the logic of unification. Rapports de Recherche I.N.R.I.A. 1008, 1989.Google Scholar
  7. [7]
    S. Malecki. Un autre terme fortement normalisable sans type polymorphe. Rapport interne, 1989.Google Scholar
  8. [8]
    S. Malecki. P.H.D. Thesis, 1990.Google Scholar
  9. [9]
    J. C. Mitchell. Polymorphic type inference and containment. Information and computation, 76(2/3), 1988.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Sophie Malecki
    • 1
  1. 1.Equipe de logique mathématiqueUniversite Paris VII - C.N.R.S. U.R.A. 753France

Personalised recommendations