Advertisement

The state operator in real time process algebra

  • J. C. M. Baeten
  • J. A. Bergstra
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 600)

Abstract

We extend the real time process algebra of [BB91a] with the state operator of [BB88]. We show the usefulness of this extension in several examples. We use concepts from (classical) real space process algebra of [BB91b] in order to deal with different locations.

Key words & Phrases

process algebra real time state operator locations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BB88]
    J.C.M. Baeten & J.A. Bergstra, Global renaming operators in concrete process algebra, Information & Computation 78 (3), 1988, pp. 205–245.Google Scholar
  2. [BB91a]
    J.C.M. Baeten & J.A. Bergstra, Real time process algebra, Formal Aspects of Computing 3 (2), 1991, pp. 142–188. (Report version appeared as report P8916, University of Amsterdam 1989.)CrossRefGoogle Scholar
  3. [BB91b]
    J.C.M. Baeten & J.A. Bergstra, Real space process algebra, in Proc. CONCUR'91, Amsterdam (J.C.M. Baeten & J.F. Groote, eds.), Springer LNCS 527, 1991, pp. 96–110. To appear in Formal Aspects of Computing.Google Scholar
  4. [BW90]
    J.C.M. Baeten & W.P. Weijland, Process algebra, Cambridge Tract in TCS 18, Cambridge University Press 1990.Google Scholar
  5. [BK84]
    J.A. Bergstra & J.W. Klop, Process algebra for synchronous communication, Inf. & Control 60, 1984, pp. 109–137.Google Scholar
  6. [BK86]
    J.A. Bergstra & J.W. Klop, Process algebra: specification and verification in bisimulation semantics, in: Math. & Comp. Sci. II (M. Hazewinkel, J.K. Lenstra & L.G.L.T. Meertens, eds.), CWI Monograph 4, North-Holland, Amsterdam 1986, pp. 61–94.Google Scholar
  7. [GV89]
    R.J. van Glabbeek & F.W. Vaandrager, Modular specifications in process algebra (with curious queues, in: Algebraic Methods: Theory, Tools & Applications, Passau 1987 (M. Wirsing & J.A. Bergstra, eds.), Springer LNCS 394, 1989, pp. 465–506.Google Scholar
  8. [HE88]
    M. Hennessy, Algebraic theory of processes, MIT Press 1988.Google Scholar
  9. [H85]
    C.A.R. Hoare, Sequential communicating processes, Prentice Hall, 1985.Google Scholar
  10. [J91a]
    A. Jeffrey, A linear time process algebra, in Proc. 3rd CAV, (K.G. Larsen & A. Skou, eds.), Aalborg 1991, report IR-91-4/5, Aalborg University, pp. 501–512.Google Scholar
  11. [J91b]
    A. Jeffrey, Abstract timed observation and process algebra, in Proc. CONCUR'91, Amsterdam (J.C.M. Baeten & J.F. Groote, eds.), Springer LNCS, 1991, pp. 332–345.Google Scholar
  12. [K91]
    A.S. Klusener, Completeness in real time process algebra, in Proc. CONCUR'91, Amsterdam (J.C.M. Baeten & J.F. Groote, eds.), Springer LNCS, 1991, pp. 376–392.Google Scholar
  13. [KM90]
    C.P.J. Koymans & J.C. Mulder, A modular approach to protocol verification using process algebra, in: Applications of Process Algebra (J.C.M. Baeten, ed.), Cambridge Tracts in TCS 17, Cambridge University Press 1990, pp. 261–306.Google Scholar
  14. [LM87]
    K.G. Larsen & R. Milner, A complete protocol verification using relativized bisilulation, in: Proc. 14th ICALP, Karlsruhe (Th. Ottmann, ed.), Springer LNCS 267, 1987, pp. 126–135.Google Scholar
  15. [M80]
    R. Milner, A calculus of communicating systems, Springer LNCS 92, 1980.Google Scholar
  16. [M89]
    R. Milner, Communication and concurrency, Prentice Hall, 1989.Google Scholar
  17. [MT90]
    F. Moller & C. Tofts, A temporal calculus of communicating systems, in: Proc. CONCUR'90, Amsterdam (J.C.M. Baeten & J.W. Klop, eds.), Springer LNCS 458, 1990, pp. 401–415.Google Scholar
  18. [MU91]
    D.V.J. Murphy, Testing, betting and timed true concurrency, in Proc. CONCUR'91, Amsterdam (J.C.M. Baeten & J.F. Groote, eds.), Springer LNCS, 1991, pp. 439–454.Google Scholar
  19. [RR88]
    G.M. Reed & A.W. Roscoe, A timed model for communicating sequential processes, TCS 58, 1988, pp. 249–261.CrossRefGoogle Scholar
  20. [S90]
    SPECS CONSORTIUM, Definition of MR and CRL version 2.1, 1990.Google Scholar
  21. [V90]
    F.W. Vaandrager, Process algebra semantics of POOL, in: Applications of Process Algebra (J.C.M. Baeten, ed.), Cambridge Tracts in TCS 17, Cambridge University Press 1990, pp. 173–236.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • J. C. M. Baeten
    • 1
    • 2
  • J. A. Bergstra
    • 2
    • 3
  1. 1.Department of Software TechnologyCWIAB AmsterdamThe Netherlands
  2. 2.Programming Research GroupUniversity of AmsterdamDB AmsterdamThe Netherlands
  3. 3.Department of PhilosophyUtrecht UniversityCS UtrechtThe Netherlands

Personalised recommendations