Algebraic aspects of the relational knowledge representation: Modal relation algebras

  • Ewa Orlowska
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 619)


Semantics based on relation algebras is introduced for various applied logics, in particular for modal logics for knowledge representation, epistemic logic, dynamic logic and temporal logics. Several classes of modal relation algebras are introduced and investigated.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boolos,G. (1979) The unprovability of consistency. Cambridge University Press, London-New York-Melbourne.Google Scholar
  2. Burgess,J.P. (1979) Logic and time. Journal of Symbolic Logic 44, 566–581.Google Scholar
  3. Fariňas del Cerro,L. and Orlowska,E. (1985) DAL-a logic for data analysis. Theoretical Computer Science 36, 251–264.Google Scholar
  4. Gargov,G. (1986) Two completeness theorems for the logic for data analysis. ICS PAS Report 581, Warsaw.Google Scholar
  5. Halpern,J. (ed) (1986) Theoretical aspects of reasoning about knowledge. Morgan Kaufmann, Los Altos, California.Google Scholar
  6. Harel,D. (1979) First order dynamic logic. Lecture Notes in Computer Science 69, Springer, Berlin-Heidelberg-New York.Google Scholar
  7. Henkin,L., Monk,J.D. and Tarski,A. (1985) Cylindric algebras, Part II. North Holland, Amsterdam.Google Scholar
  8. Hoare,C.A.R. and Jifeng,H. (1986) The weakest prespecification. Fundamenta Informaticae IX. Part I: 51–84, Part II: 217–262.Google Scholar
  9. Humberstone,I.L. (1983) Inaccessible worlds. Notre Dame Journal of Formal Logic 24, 346–352.Google Scholar
  10. Jónsson,B. (1982) Varieties of relation algebras. Algebra Universalis 15, 273–298.Google Scholar
  11. Jónsson,B. (1991) The theory of binary relations. In: Andreka, H., Monk, J.D. and Nemeti, I. Algebraic logic. North Holland, Amsterdam.Google Scholar
  12. Konikowska,B. (1987) A formal language for reasoning about indiscernibility. Bulletin of the PAS 35, Ser. Math., 239–249.Google Scholar
  13. Lenzen,W. (1978) Recent work in epistemic logic. Acta Philosophica Fennica 30, 1–219.Google Scholar
  14. Monk,J.D. (1969) Nonfinitizability of classes of representable cylindric algebras. Journal of Symbolic Logic 34, 331–343.Google Scholar
  15. Nemeti,I. (1990) Algebraizations of quantifier logics, an introductory overview. Manuscript.Google Scholar
  16. Orlowska,E. (1983) Semantics of vague concepts. In: Dorn, G. and Weingartner, P. (eds) Foundations of logic and linguistics. Problems and solutions. Selected contributions to the 7th International Congress of Logic, Methodology and Philosophy of Science, Salzburg. Plenum Press, New York, 465–482.Google Scholar
  17. Orlowska,E. (1985) Logic of nondeterministic information. Studia Logica XLIV, 93–102.Google Scholar
  18. Orlowska,E. (1988) Relational interpretation of modal logics. In: Andreka, H., Monk, J.D. and Nemeti, I. (eds) Algebraic logic. North Holland, Amsterdam, 1991, 443–471. See also Bulletin of the Section of Logic 17 No 1, (1988), 2–14.Google Scholar
  19. Orlowska,E. (1989) Logic for reasoning about knowledge. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 35, 559–572.Google Scholar
  20. Orlowska,E. (1990) Interpretation of relevant logics in a logic of ternary relations. Bulletin of the Section of Logic 19 No 2, 39–49.Google Scholar
  21. Orlowska,E. (1991a) Dynamic logic with program specifications and its relational proof system. Journal of Applied Non-Classical Logics, to appear. See also Bulletin of the Section of Logic 18 No 4, (1989), 132–137.Google Scholar
  22. Orlowska,E. (1991b) Post relation algebras and their proof system. Proceedings of the 21st International Symposium on Multiple-Valued Logic, Victoria, Canada, 1991, 298–305. See also Bulletin of the Section of Logic 20 No 1, (1991), 14–22.Google Scholar
  23. Pearce,D. and Wagner,G. (1989) Reasoning with negative information I: Strong negation in logic programs. Gruppe für Logik, Wissentheorie und Information an der Freien Universitat Berlin, Bericht Nr. 4/89.Google Scholar
  24. Pratt,V.R. (1976) Semantical considerations on Floyd-Hoare logic. Proceedings of the 17th IEEE Symp. on Foundations of Computer Science, 109–121.Google Scholar
  25. Prior,A. (1967) Past, present and future. Oxford University Pres, Oxford.Google Scholar
  26. Rasiowa,H. and Sikorski,R. (1963) The mathematics of metamathematics. Polish Scientific Publishers, Warsaw.Google Scholar
  27. Segerberg,K. (1971) An essay in classical modal logic. Filosofiska Studier, Uppsala Universitet, Uppsala.Google Scholar
  28. Segerberg,K. (1979) Wremiennaja logika von Wrighta. In: Logiczeskij wywod. Nauka, Moscow, 173–205 (in Russian).Google Scholar
  29. Tarski,A. (1941) On the calculus of relations. Journal of Symbolic Logic 6, 73–89.Google Scholar
  30. Tarski,A. (1955) Contributions to the theory of models. Indagationes Mathematicae 17, 56–64.Google Scholar
  31. Vakarelov,D. (1987) Abstract characterization of some knowledge representation systems and the logic NIL of nondeterministic information. In: Jorrand Ph. and Sgurev, V. (eds) Artificial Intelligence II, Methodology, Systems, Applications. North Holland, Amsterdam.Google Scholar
  32. Vakarelov,D. (1989) Modal logics for knowledge representation. Springer Lecture Notes in Computer Science 363, 257–277.Google Scholar
  33. Valiev,M.K. (1988) Interpretation of modal logics as epistemic logics (In Russian). Proceedings of the Conference 'Borzomi '88, Moscow, 76–77.Google Scholar
  34. Van Benthem,J. (1984) Correspondence theory. In: D.Gabbay and F. Guenther (eds) Handbook of Philosophical Logic. Vol II, Reidel, 167–247.Google Scholar
  35. VonWright, G.H. (1965) And next. Acta Philosophica Fennica 18, 293–304.Google Scholar
  36. Wagner,G. (1990) Vivid reasoning with negative information. Gruppe für. Logik, Wissentheorie und Information an der Freien Universitat Berlin, Bericht Nr. 8/90.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Ewa Orlowska
    • 1
  1. 1.Institute of Theoretical and Applied Computer SciencePolish Academy of SciencesPoland

Personalised recommendations