A real-time agent model in an asynchronous-object environment

  • Z. Guessoum
  • M. Dojat
Task-Specific Analysis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1038)


To build intelligent control systems for real-life applications, we need to design software agents which combine cognitive abilities to reason about complex situations, and reactive abilities to meet hard deadlines. We propose an operational agent model which mixes AI techniques and real-time performances. Our model is based on an ATN (Augmented Transition Network) to dynamically adapt the agent's behavior to changes in the environment. Each agent uses a production system and is provided with a synchronization mechanism to avoid the possible inconsistencies of the asynchronous execution of several rule bases. Our agents communicate by message-passing and are implemented in an asynchronous-object environment. We report on the use of our agent model in intensive care patient monitoring.

Key words

Multi-Agent Actors Real-Time ATN Production Rules Object-Oriented Language Artificial Ventilation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Agha 1986]
    G. Agha. Actors: a model of concurrent computation in distributed systems. Cambridge MA (USA), MIT Press 1986.Google Scholar
  2. [Barachini and Granec 1993]
    F. Barachini and R. Granec. Productions systems for process control: advances and experiences. Applied Artificial Intelligence 7: 301–316, 1993.Google Scholar
  3. [Bouron 1992]
    T. Bouron. What architecture for communication among computational agents? Report LAFORIA 92/35, November 1992.Google Scholar
  4. [Briot 1989]
    J-P. Briot. Actalk: a testbed for classifying and designing actor languages in the Smalltalk-80 environment. Proc. of ECOOP'89, Cook, p. 109–130, 1989.Google Scholar
  5. [Briot 1995]
    J-P. Briot. Modélisation et classification de langages de programmation concurrente à objets: l'expérience Actalk. Proc. of LMO'95, Grenoble, 1995.Google Scholar
  6. [Bussmann and Demazeau 1994]
    S. Bussmann and Y. Demazeau. An agent model combining reactive and cognitive capabilities. Proc. of IEEE International Conference on Intelligent Robots and Systems — IROS'94, München, 1994.Google Scholar
  7. [Charpillet and Boyer 1994]
    F. Charpillet and A. Boyer. Incorporating AI techniques into predictable real-time systems: Reakt outcome. Proc. of 14ème journées internationales Avignon'94, Avignon, p. 121–135, 1994.Google Scholar
  8. [Charpillet and Théret 1994]
    F. Charpillet and P. Théret. I.A. et temps réel. Bulletin de l'AFIA 17: 19–42, 1994.Google Scholar
  9. [Dojat and Pachet 1992]
    M. Dojat and F. Pachet. NéoGanesh: an extensible Knowledge-Based System for the Control of Mechanical Ventilation. 14th IEEE-EMBS, Paris, p. 920–921, 1992.Google Scholar
  10. [Dojat et al. 1995]
    M. Dojat M. Harf, D. Touchard M. Laforest, H. Lemaire and L. Brochard. Clinical evaluation of a knowledge-based system providing ventilatory management and decision for extubation during weaning from mechanical ventilation. American Journal of Respiratory and Critical Care Medicine: to appear, 1995.Google Scholar
  11. [Dojat and Sayettat 1996]
    M. Dojat and C. Sayettat. A realistic model for temporal reasoning in real-time patient monitoring. Applied Artificial Intelligence: to appear in vol. 10 n∘2, 1996.Google Scholar
  12. [Durfee et al. 1987]
    E. H. Durfee, V. Lesser, D. D. Corkill. Coherent Cooperation Among Communicating Problem Solvers. IEEE Transactions on Computers 36(11): 1275–1291, 1987.Google Scholar
  13. [Erman et al. 1980]
    L. D. Erman, F. Hayes-Roth, V. Lesser. The Hearsay II speech understanding system: integrating knowledge to resolve uncertainty. ACM Computing Surveys 12 (2), 1980.Google Scholar
  14. [Ferber 1995]
    J. Ferber. Les systèmes multi-agents, vers une intelligence collective. InterEditions, Paris, 1995.Google Scholar
  15. [Ferber and Briot 1988]
    J. Ferber and J-P. Briot. Design of concurrent language for distributed artificial intelligence. Proc. of International Conference on Fifth Generation Computer Systems, Tokyo, Icot, p. 755–762, 1988.Google Scholar
  16. [Ferguson]
    1992I. A. Ferguson. TouringMachines: An Architecture for Dynamic, Rational, Mobile Agents. PhD thesis, Clare Hall, University of Cambridge, UK.Google Scholar
  17. [Gasser 1992]
    L. Gasser. An Overview of DAI. In Distributed Artificial Intelligence. N. M. Avouris and L. Gasser (eds.), Klewer Academic Publisher, Boston, 1992.Google Scholar
  18. [Garvey and Lesser 1994]
    A. Garvey and V. Lesser. A survey of research in deliberative real-time artificial intelligence. Journal of Real-Time Systems 6 (3): 313–347, 1994.Google Scholar
  19. [Guessoum 1994]
    Z. Guessoum. Systèmes asynchrones de production. Proc. of 2ème Journées IADSMA'94, Voiron, p. 169–180, 9–11 may, 1994.Google Scholar
  20. [Guessoum 1995]
    Z. Guessoum. A framework integrating an object-oriented multi-agent system and discrete event simulation. Proc. of First LAAS ICCS'95, Beirut, p. 165–173, 1995.Google Scholar
  21. [Guessoum and Durand 1995]
    Z. Guessoum and R. Durand. Un système multi-agents pour modéliser l'évolution economique. Report LAFORIA, to appear, 1995.Google Scholar
  22. [Hayes-Roth 1985]
    B. Hayes-Roth. Blackboard architecture for control. A rtificial Intelligence 26: 251–321, 1985.Google Scholar
  23. [Hayes-Roth et al. 1992]
    B. Hayes-Roth, R. Washington, D. Ash, R. Hewett, A. Collinot, A. Vina and A. Seiveur. Guardian: a prototype intelligent agent for intensive-care monitoring. Artificial Intelligence in Medicine 4: 165–185, 1992.CrossRefGoogle Scholar
  24. [Hewitt 1977]
    C. Hewitt. Viewing control structures as patterns of passing messages. Artificial Intelligence 8 (3): 323–364, 1977.CrossRefGoogle Scholar
  25. [Ishida 1990]
    T. Ishida. Methods and effectiveness of parallel rule firing. IEEE Conf. on Artificial Intelligence Applications, Washington, p. 116–122, 1990.Google Scholar
  26. [Johnson 1994]
    Johnson R. How to Develop Frameworks, Tutorial notes (10), 8th ECOOP'94, Bologna, 1994.Google Scholar
  27. [Müller and Pischel 1994]
    J.P. Müller and M. Pischel. Modelling reactive behaviour in vertically layered agent architectures. Proc. of ECAI'94, p. 709–713, Amsterdam, (NL), 1994.Google Scholar
  28. [Musliner et al. 1995]
    D. J. Musliner, J. A. Hendler, A. K. Agrawala, E. H. Durfee, J.K. Strosnider and C.J. Paul., The Challenge of Real-Time AI. Computer (January): 58–66, 1995.Google Scholar
  29. [Nii et al. 1989]
    H. P. Nii, N. Aiello, J. Rice. Experiments on Cage and Poligon: measuring the performance of parallel blackboard systems. Distributed Artificial Intelligence. L. Gasser and M. N. Huhns. San Mateo (Ca), Morgan Kaufmann. 2: 319–383, 1989.Google Scholar
  30. [Pachet 1992]
    F. Pachet. Représentation de connaissances par objets et règles: le système NéOpus. PhD thesis, LAFORIA, Paris 6, 1992.Google Scholar
  31. [Pachet and Perrot 1994]
    F. Pachet and J-F. Perrot. Rule Firing with MetaRules. Proc. of SEKE'94, Jurmala, Latvia, p. 322–329, 1994.Google Scholar
  32. [Pachet 1995]
    F. Pachet. On the Embeddability of Production Rules in Object-Oriented Languages. Journal of Object-Oriented Programming 8(4): 19–24, 1995.Google Scholar
  33. [Quaglini et al. 1992]
    S. Quaglini, R. Bellazi, C. Brzuini, M. Stefanelli and G. Barosi. Hybrid Knowledge-Based Systems for Therapy Planning. Artificial Intelligence in Medicine 4: 207–226, 1992.CrossRefGoogle Scholar
  34. [Shoham 1993]
    Y. Shoham. Agent-Oriented Programming. Artificial Intelligence 60: 139–159, 1993.CrossRefGoogle Scholar
  35. [Sukuvaara et al. 1993]
    T. I. Sukuvaara, M. E. Sydänmaa, H.O. Nieminen, A. Heikelä and E. M. Koski. Object-Oriented Implementation of an Architecture for Patient Monitoring. IEEE Transactions in Biology Engineering 12 (4): 69–81, 1993.CrossRefGoogle Scholar
  36. [Wolinski 1994]
    F. Wolinski. RPC-Talk: une librairie RPC-pour Smalltalk, Introduction à RPC et utilisations de RPC-Talk. Report LAFORIA 94/26, November, 1994Google Scholar
  37. [Woods 1970]
    W. Woods. Transition Network Grammar for Natural Language Analysis. Communication of Association of Computing Machinery 13 (10): 591–606, 1970.Google Scholar
  38. [Yokote and Tokoro 1987]
    Y. Yokote and M. Tokoro. Experience and Evolution of Concurrent Smalltalk. Proc. of OOPSLA'87, Orlando (USA), Special issue of SIGPLAN notices, ACM, p. 406–415, 1987.Google Scholar
  39. [Yonezawa et al. 1986]
    A. Yonezawa, J-P. Briot, E. Shibayama. Object-Oriented Concurrent Programming in ABCL/1. Proc. of OOPSLA'86, Portland (USA), Special issue of SIGPLAN notices, ACM, p. 258–268, 1986.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Z. Guessoum
    • 1
  • M. Dojat
    • 2
  1. 1.Equipe OMC de J-F Perrot, LAFORIA-IBPUniversité Paris 6Paris
  2. 2.Faculté de MédecineINSERM Unité 296CreteilFrance

Personalised recommendations