Lactose biosynthesis

  • Keith Brew
  • Robert L. Hill
Chapter
Part of the Reviews of Physiology, Biochemistry and Pharmacology book series (volume 72)

Keywords

Mammary Gland Bovine Milk Mouse Mammary Gland Golgi Membrane Human Lysozyme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achter, E. K., Swan, I. D. A.: On the conformation of lysozyme and α-lactalbumin in solution. Biochemistry 10, 2976–2978 (1971).Google Scholar
  2. Andrews, P.: Lactose synthetase A protein from human milk. Biochem. J. 111, 14P–15P (1968).Google Scholar
  3. Andrews, P.: Purification of lactose synthetase A protein from human milk and demonstration of its interaction with α-lactalbumin. FEBS Lett., 9, 297–300 (1970).Google Scholar
  4. Andrews, P.: The effect of temperature on a reaction catalyzed by lactose synthetase A protein. FEBS Lett. 26, 333–335 (1972).Google Scholar
  5. Andrews, P., Kitchen, B. J., Winzor, D. J.: Use of affinity chromatography for the quantitative study of acceptor-ligand interactions: the lactose synthetase system. Biochem. J. 135, 897–900 (1973).Google Scholar
  6. Atassi, M. Z., Habeeb, A. F. S. A., Rydstedt, L.: Lack of immunochemical cross-reaction between lysozyme and α-lactalbumin and comparison of their conformations. Biochim. Biophys. Acta 200, 184–187 (1970).Google Scholar
  7. Aune, K.: The thermodynamics of the denaturation of lysozyme. Ph. D. Dissertation, Duke University 1968.Google Scholar
  8. Babad, H., Hassid, W. Z.: A soluble lactose-synthesizing enzyme from bovine milk. J. Biol. Chem. 239, PC–946–948 (1964).Google Scholar
  9. Babad, H., Hassid, W. Z.: Soluble uridine diphosphate: D-glucose β-4-0-galactosyl transferase from bovine milk. J. Biol. Chem. 241, 2672–2678 (1966).Google Scholar
  10. Baldwin, R. L., Mulligan, L. P.: Enzymatic changes associated with the initiation and maintenance of lactation in the rat. J. Biol. Chem. 241, 2058–2066 (1966).Google Scholar
  11. Barel, A. O., Prieels, J. P., Maes, E., Looze, Y., Léonis, J.: Comparative physicochemical studies of human α-lactalbumin and human lysozyme. Biochim. Biophys. Acta 257, 288–296 (1972 a).Google Scholar
  12. Barel, A. O., Turneer, M., Dolmans, M.: Spectral studies of the interaction of bovine α-lactalbumin and egg-white lysozyme with 2-p-toluidinyl naphthalene-6-sulfonate. Eur. J. Biochem. 30, 26–32 (1972 b).Google Scholar
  13. Barman, T. E.: Purification and properties of bovine milk glyco-α-lactalbumin. Biochim. Biophys. Acta 214, 242–244 (1970).Google Scholar
  14. Barman, T. E.: The modification of the tryptophan residues of bovine α-lactalbumin with 2-hydroxy-5-nitrobenzyl bromide and with dimethyl (2-hydroxy-5-nitrobenzyl) sulphonium bromide. I. Characterization of the modified protein. Biochim. Biophys. Acta 258, 297–313 (1972).Google Scholar
  15. Barman, T. E., Bagshaw, W.: The modification of the tryptophan residues of bovine α-lactalbumin with 2-hydroxyl-5-nitrobenzyl bromide and with dimethyl-(2-hydroxy-5-nitrobenzyl)-sulphonium bromide. II. Effect on the specifier protein activity. Biochim. Biophys. Acta 278, 491–500 (1972).Google Scholar
  16. Barker, R., Olsen, K., Shaper, J. H., Hill, R. L.: Agarose derivatives of uridine diphosphate and N-acetylglucosamine for the purification of a galactosyl transferase. J. Biol. Chem. 247, 7135–7147 (1972).Google Scholar
  17. Barker, R., Trayer, I. P., Hill, R. L.: Nucleoside phosphates attached to agarose. Methods in Enzymol., in press (1974a).Google Scholar
  18. Barker, R., Trayer, I. P., Hill, R. L.: Monosaccharides attached to agarose. Methods in Enzymol., in press (1974b).Google Scholar
  19. Baxter, C. F., Kleiber, M., Black, A. L.: The bood precursors of lactose as studied with 14C-labeled metabolites in intact dairy cows. Biochim. Biophys. Acta 21, 277–285 (1956).Google Scholar
  20. Beans, H. W., Kessel, R. G.: The Golgi apparatus, structure and function. In “International Review of Cytology” 23, 209–276. Ed. Bourne, G. H., and Danielli, J. F., New York and London: Academic Press 1968.Google Scholar
  21. Beitz, D. C., Mohrenweiser, H. W., Thomas, J. W., Wood, W. A.: Synthesis of milk proteins in a cell-free system isolated from lactating bovine mammary tissue. Arch. Biochem. Biophys. 132, 210–222 (1969).Google Scholar
  22. Blake, C. C. R., Mair, G. A., North, A. C. T., Phillips, D. C., Sarma, V. R.: On the conformation of the hen egg-white lysozyme molecule. Proc. Roy. Soc. B 167, 365–377 (1967).Google Scholar
  23. Brew, K., Campbell, P. N.: The characterization of the whey proteins of guinea pig milk. The isolation and characterization of α-lactalbumin. Biochem. J. 102, 258–264 (1967 a).Google Scholar
  24. Brew, K., Campbell, P. N.: Studies on the biosynthesis of protein by lactating guinea pig mammary gland. Characteristics of the synthesis of α-lactalbumin and total protein by slices and cell-free systems. Biochem. J. 102, 265–274 (1967 b).Google Scholar
  25. Brew, K., Vanaman, T. C., Hill, R. L.: Structural studies on α-lactalbumin, the B protein of lactose synthetase. Fed. Proc. 26, 724 (1967 a).Google Scholar
  26. Brew, K., Vanaman, T. C., Hill, R. L.: Comparison of the amino acid sequence of bovine α-lactalbumin and hens egg-white lysozyme. J. Biol. Chem. 242, 3747–3749 (1967b).Google Scholar
  27. Brew, K., Vanaman, T. C., Hill, R. L.: The role of α-lactalbumin and the A protein in lactose synthetase: a unique mechanism for the control of a biological reaction. Proc. Natl. Acad. Sci. (U.S.) 59, 491–497 (1968).Google Scholar
  28. Brew, K.: Secretion of α-lactalbumin into milk and its relevance to the organization and control of lactose synthetase. Nature 223, 671–672 (1969).Google Scholar
  29. Brew, K.: Lactose synthetase: evolutionary origins, structure and control. “Essays in Biochemistry” P. N. Campbell and F. Dickens, eds., 6, 93–118 (1970).Google Scholar
  30. Brew, K., Castellino, F. J., Vanaman, T. C., Hill, R. L.: The complete amino acid sequence of bovine α-lactalbumin. J. Biol. Chem. 245, 4570–4582 (1970).Google Scholar
  31. Brew, K., Hill, R. L.: The isolation and characterization of the tryptic, chymotryptic, peptic and cyanogen bromide peptides from bovine α-lactalbumin. J. Biol. Chem. 245, 4559–4569 (1970).Google Scholar
  32. Brew, K.: The complete amino acid sequence of guinea pig α-lactalbumin. Eur. J. Biochem. 27, 341–353 (1972).Google Scholar
  33. Brew, K., Findlay, J. B. C., Khatra, B. S.: Structure and regulation of lactose synthetase. In “Behavior of Regulatory Enzymes”. Biochemical Society Monograph (Ed. by Thorne, C. J. O. R., Tipton, K. F.) pp. 19–32. London and New York: Academic Press (1973).Google Scholar
  34. Brew, K., Steinman, H. M.: Hill, R. L.: A partial amino acid sequence of α-lactalbumin-I of the grey kangaroo (Macropus giganteus). J. Biol. Chem. 248, 4739–4742 (1973).Google Scholar
  35. Brew, K., Shaper, J. H., Olsen, K. W., Trayer, I. P., Hill, R. L.: Crosslinking of the components of lactose synthetase by dimethylpimelimidate. J. Biol. Chem., in press, 1975.Google Scholar
  36. Brodbeck, U., Ebner, K. E.: Resolution of a soluble lactose synthetase into two protein components and solubilization of microsomal lactose synthetase. J. Biol. Chem. 241, 762–764 (1966a).Google Scholar
  37. Brodbeck, U., Ebner, K. E.: The sucellular distribution of the A and B proteins of lactose synthetase in bovine and rat mammary tissue. J. Biol. Chem. 241, 5526–5532 (1966b).Google Scholar
  38. Brodbeck, U., Denton, W. L., Tanahashi, N., Ebner, K. E.: The isolation and identification of the B protein of lactose synthetase as α-lactalbumin. J. Biol. Chem. 242, 1391–1397 (1967).Google Scholar
  39. Brown, W. J., North, A. C. T., Phillips, D. C., Brew, K., Vanaman, T. C., Hill, R. L.: A possible three-dimensional structure of bovine α-lactalbumin based on that of hen's egg-white lysozyme. J. Mol. Biol. 42, 65–86 (1969).Google Scholar
  40. Canfield, R. E.: The amino acid sequence of egg-white lysozyme. J. Biol. Chem. 238, 2698–2707 (1943).Google Scholar
  41. Canfield, R. E., Liu, A. K.: The disulfide bonds of egg-white lysozyme (Muramidase). J. Biol. Chem. 240, 1997–2002 (1965).Google Scholar
  42. Canfield, R. E., Kammerman, G., Sobel, J. H., Morgan, F. T.: Primary structure of lysozymes from man and goose. Nature. New Biology 232, 16–17 (1971).Google Scholar
  43. Caputto, R., Leloir, L. F., Cardini, C. E., Palladini, J. R.: Isolation of the coenzyme of the galactose-glucose phosphate transformation. J. Biol. Chem. 184, 333–350 (1950).Google Scholar
  44. Caro, L. G., Palade, G. E.: Protein synthesis, storage and discharge in the pancreatic cell. An autoradiographic study. J. Cell. Biol. 20, 473–495 (1964).Google Scholar
  45. Castellino, F. J., Hill, R. L.: The carboxymethylation of bovine α-lactalbumin. J. Biol. Chem. 245, 417–424 (1970).Google Scholar
  46. Coffey, R. G., Reithel, F. J.: The lactose synthetase particles of lactating bovine mammary gland. Preparation of particles with intact lactose synthetase. Biochem. J. 109, 169–176 (1968 a).Google Scholar
  47. Coffey, R. G., Reithel, F. J.: The lactose synthetase particles of lactating bovine mammary gland. Characteristics of the particles. Biochem. J. 109, 177–183 (1968 b).Google Scholar
  48. Cohn, R., Segal, S.: Some characteristics and developmental aspects of rat uridine diphosphogalactose 4-epimerase. Biochim. Biophys. Acta 171, 333–341 (1969).Google Scholar
  49. Cowburn, D. A., Bradbury, E. M., Crane-Robinson, C., Gratzer, W. B.: An investigation of the conformation of bovine α-lactalbumin by proton magnetic resonance and optical spectroscopy. Eur. J. Biochem. 14, 83 (1970).Google Scholar
  50. Cowburn, D. A., Brew, K., Gratzer, W. B.: An analysis of the circular dichroism of the lysozyme-α-lactalbumin group of proteins. Biochemistry 11, 1128–1234 (1972).Google Scholar
  51. Cowie, A. T.: The initiation of milk secretion at parturition (Reynolds, M., and Follie, S. J., eds.) p. 157. Philadelphia: University of Pennsylvania Press (1969).Google Scholar
  52. Cunningham, W. P., Mollehauer, H. H.: Isolation and purification of Golgi apparatus from rat testis. J. Cell. Biol. 47, 449 (Abstracts 10th Ann. Meeting Am. Soc. Cell. Biol.) (1970).Google Scholar
  53. Den, H., Kaufman, B., Roseman, S.: Properties of some glycosyltransferases in embryonic chicken brain. J. Biol. Chem. 245, 6607–6615 (1970).Google Scholar
  54. Denton, W. L., Ebner, K. E.: The effect of tyrosyl modification on the activity of α-lactalbumin in the lactose synthetase reaction. J. Biol. Chem. 246, 4053–4059 (1971).Google Scholar
  55. Dimant, E., Smith, V. R., Lardy, H. A.: Lactose synthesis in the mammary gland perfused with 1-14C-glucose. J. Biol. Chem. 201, 85–91 (1953).Google Scholar
  56. Ebner, K. E., Denton, W. L., Brodbeck, U.: The substitution of α-lactalbumin for the B protein of lactose synthetase. Biochim. Biophys. Res. Commun. 24, 232–236 (1966).Google Scholar
  57. Ebner, K. E.: A biological role for α-lactalbumin as a component of an enzyme requiring two proteins. Acc. Chem. Res. 3, 41–47 (1970).Google Scholar
  58. Ebner, K. E.: Lactose synthetase in “The Enzymes”, P. Boyer, ed., Vol. IX, Part B, 363–377, Academic Press, New York, 1973.Google Scholar
  59. Fairhurst, F., Mcilreavy, D., Campbell, P. N.: The protein-synthesizing activity of ribosomes isolated from the mammary gland of lactating and pregnant guinea pigs. Biochem. J. 123, 865–874 (1971).Google Scholar
  60. Findlay, J. B. C., Brew, K.: The complete amino acid sequence of human α-lactalbumin. Eur. J. Biochem. 27, 65–86 (1972).Google Scholar
  61. Fitzgerald, D. K., Brodbeck, U., Kiyosawa, I., Mawal, R., Colvin, B., Ebner, K. E.: α-Lactalbumin and the lactose synthetase reaction. J. Biol. Chem. 245, 2103–2108 (1970).Google Scholar
  62. Fleischer, B., Fleischer, S., Ozawa, H.: Isolation and characterization of Golgi membranes from bovine liver. J. Cell. Biol. 43, 59–79 (1969).Google Scholar
  63. Fleischer, B., Fleischer, S.: Preparation and characterization of Golgi membranes from rat liver. Biochim. Biophys. Acta 219, 301–319 (1970).Google Scholar
  64. Gander, J. E., Peterson, W. E., Boyer, P. O.: On the mechanism of the enzymatic synthesis of lactose. Arch. Biochem. Biophys. 60, 259–261 (1956).Google Scholar
  65. Gorbunoff, M. J.: Exposure of tyrosine residues in protein. Reaction of cyanuric fluoride with ribonuclease, α-lactalbumin and β-lactoglobulin. Biochemistry 6, 1606–1615 (1967).Google Scholar
  66. Gordon, W. G., Semmett, W. F.: The isolation of crystalline α-lactalbumin from milk. J. Am. Chem. Soc. 75, 328–330 (1953).Google Scholar
  67. Gordon, W. G., Aschaffenburg, R., Sen, A., Ghosh, S. K.: Amino acid composition of several α-lactalbumins. J. Dairy Sci. 51, 947 Abs. M103 (1968).Google Scholar
  68. Gordon, W. G.: α-Lactalbumin. In “Milk Proteins” (H. A. McKenzie, ed.) II, pp. 331–365. New York and London: Academic Press 1971.Google Scholar
  69. Gottschalk, A.: Biosynthesis of glycoproteins and its relationship to heterogeneity. Nature 222, 452–454 (1969).Google Scholar
  70. Grant, G. A.: The metabolism of galactose. 1. Lactose synthesis from (a) glucose-galactose mixture, (b) phosphoric esters, by slices of the active mammary gland in vitro. 2. The effect of prolactin on lactose synthesis in the mammary gland. Biochem. J. 30, 2027–2035 (1936).Google Scholar
  71. Guire, P.: Differences in tryptophan exposure between chicken egg-white lysozyme and bovine α-lactalbumin. Biochim. Biophys. Acta 221, 383–386 (1970).Google Scholar
  72. Habeeb, A. F. S. A., Atassi, M. Z.: Enzymic and immunochemical properties of lysozyme. IV. Demonstration of conformational differences between α-lactalbumin and lysozyme. Biochem. Biophys. Acta 236, 131–141 (1971).Google Scholar
  73. Helminen, H. J., Ericsson, J. L. E.: Studies on mammary gland involution. I. On the ultra structure of the lactating mammary gland. J. Ultrastruct. Res. 25, 193–213 (1968).Google Scholar
  74. Hill, R. L., Brew, K., Vanaman, T. C., Trayer, I. P., Mattock, P.: The structure, function and evolution of α-lactalbumin. Brookhaven Symposium in Biology No. 21, 139–154 (1968).Google Scholar
  75. Hindle, E. J., Whellock, J. V.: Carbohydrates of bovine α-lactalbumin preparations. Chimia 25, 188–190 (1971).Google Scholar
  76. Imoto, T., Johnson, L. N., North, A. C. T., Phillips, D. C., Rupley, J. A.,: Vertebrate lysozymes, in “The Enzymes”, P. Boyer, ed., pp. 666–868, Vol. VII. New York: Academic Press 1972.Google Scholar
  77. Ivatt, R. J., Rosenmeyer, M. S.: The complex formed between the A and B proteins of lactose synthetase. FEBS Letts. 28, 195–197 (1972).Google Scholar
  78. Iyer, K. S., Klee, W. A.: Direct spectrophotometric measurement of the rate of reaction of disulfide bonds. The reactivity of the disulfide bonds of bovine α-lactalbumin. J. Biol. Chem. 248, 707–710 (1973).Google Scholar
  79. Jenness, R.: Protein composition of milk in milk proteins, Chemistry and Molecular Biology (H. A. McKenzie, ed.) pp. 17–43. New York: Academic Press Inc. 1970.Google Scholar
  80. Jollés, P.: Relationship between chemical structure and biological activity of hen egg-white lysozyme and lysozymes of different species. Proc. Roy. Soc. (London) Ser. B 167, 350–364 (1967).Google Scholar
  81. Jones, E. A.: Studies on the particulate lactose synthetase of mouse mammary gland and the role of α-lactalbumin in the initiation of lactose synthesis. Biochem. J. 126, 67–78 (1972).Google Scholar
  82. Jones, E. A., Cowie, A. T.: The effect of hypophysectomy and subsequent replacement therapy with sheep prolactin or bovine growth hormone on the lactose synthetase activity of rabbit mammary gland. Biochem. J. 130, 997–1002 (1972).Google Scholar
  83. Juergens, W. G., Stockdale, F. E., Topper, Y. J., Elias, J. J.: Hormone-dependent differentiation of mammary gland in vitro. Proc. Natl. Acad. Sci. (U.S.A.) 54, 629–634 (1965).Google Scholar
  84. Keenan, T. W., Morre, D. J., Cheetham, R. D.: Lactose synthetase by a Golgi apparatus fraction from rat mammary gland. Nature 228, 1105–1106 (1970).Google Scholar
  85. Khatra, B. S., Herries, D. G., Brew, K.: Some kinetic properties of human milk galactosyl transferase. Eur. J. Biochem. 44, 537–560 (1974).Google Scholar
  86. Klee, W. A., Klee, C. B.: The role of α-lactalbumin and the A protein of lactose synthetase. Biochem. Biophys. Res. Commun. 39, 833–841 (1970).Google Scholar
  87. Klee, W. A., Klee, C. B.: The interaction of α-lactalbumin and the A protein of lactose synthetase. J. Biol. Chem. 247, 2336–2344 (1972).Google Scholar
  88. Kleiber, M., Black, A. L., Brown, M. A., Baxter, C. R., Luick, J. R., Stadtman, F. H.: Glucose as a precursor of milk constituents in the intact dairy cow. Biochem. Biophys. Acta 17, 252–260 (1955).Google Scholar
  89. Kon, S. K., Cowie, A. T., eds.: “Milk: The Mammary Gland and Its Secretion.” 515 pp. Vol. I. New York: Academic Press 1961a.Google Scholar
  90. Kon, S. K., Cowie, A. T., eds.: “Milk: The Mammary Gland and Its Secretion.” 423 pp. Vol. II. New York: Academic Press 1961b.Google Scholar
  91. Krigbaum, W. R., Kugler, F. R.: Molecular conformation of egg-white lysozyme and bovine α-lactalbumin in solution. Biochemistry 9, 1216–1223 (1970).Google Scholar
  92. Kronman, M. J., Holmes, L. G.: Inter-and intramolecular interactions of α-lactalbumin. IV. Location of tryptophan groups. Biochemistry 4, 526–532 (1965).Google Scholar
  93. Kronman, M. J.: Similarity in backbone conformation of egg-white lysozyme and bovine α-lactalbumin. Biochem. Biophys. Res. Commun. 33, 535–541 (1968).Google Scholar
  94. Kronman, M. J., Holmes, L. G., Robbins, F. M.: Inter-and intramolecular interactions of α-lactalbumin X. Effect of acylation of tyrosyl and lysyl side chains on molecular conformations. J. Biol. Chem. 246, 1909–1921 (1971).Google Scholar
  95. Kuhn, N. J., Lowenstein, J. M.: Lactogenesis in the rat. Changes in metabolic parameters at parturition. Biochem. J. 105, 995–1002 (1967).Google Scholar
  96. Kuhn, N. J.: Lactogenesis in the rat. Metabolism of uridine diphosphate galactose by mammary gland. Biochem. J. 106, 743–748 (1968).Google Scholar
  97. Kuhn, N. J.: The lactogenetic action of human chorionic gonadotropin in the rat. Biochem. J. 129, 495–496 (1972).Google Scholar
  98. Kuhn, R., Löw, I.: Über ein Vorkommen von Milchzucker im Pflanzenreich. Chem. Ber. 82, 479–481 (1949).Google Scholar
  99. Lawford, G. R., Schachter, H.: Biosynthesis of glycoprotein by liver. The incorporation in vivo of 14C-glucosamine into protein-bound hexosamine and sialic acid of rat liver subcellular fractions. J. Biol. Chem. 241, 5409–5418 (1966).Google Scholar
  100. Leloir, L. R., Cardini, L. E.: The biosynthesis of lactose. In “Milk: The Mammary Gland and its Secretion”, Kon, S. K., and Cowie, A. T., eds., Vol. I, 421–440. New York: Academic Press 1961.Google Scholar
  101. Lin, T.: Lactose synthetase. Modification of carboxyl groups in α-lactalbumin. Biochemistry 9, 984–995 (1970).Google Scholar
  102. Ling, E. R., Kon, S. K., Porter, J. V. R.: The composition of milk and the nutritive value of its components. In “Milk: The Mammary Gland and its Secretion”, Kon, S. K., and Cowie, A. T., eds., Vol. II, 195–263 (1961).Google Scholar
  103. Lockwood, D. H., Turkington, R. W., Topper, Y. J.: Hormone-dependent development of milk protein synthesis in mammary gland in vitro. Biochim. Biophys. Acta 130, 493–501 (1966).Google Scholar
  104. Lyster, R. L. J.: Reviews of the progress of dairy science. Sect. C. Chemistry of milk proteins. J. Dairy Res. 39, 279–318 (1972).Google Scholar
  105. Magee, S. C., Mawal, R., Ebner, K. E.: Proteolytic conversion of the molecular forms of bovine milk transferase. J. Biol. Chem. 248, 7565–7569 (1973).Google Scholar
  106. Mawal, R., Morrison, J. F., Ebner, K. E.: Studies on galactosyl transferase. Detection of enzyme-reactant complexes by means of affinity chromatography. J. Biol. Chem. 246, 7106–7109 (1971).Google Scholar
  107. McGuire, E. J., Jordian, G. W., Carlson, D. M., Roseman, S.: Incorporation of D-galactose into glycoproteins. J. Biol. Chem. 240, PC4113–PC4115 (1965).Google Scholar
  108. McKenzie, H. A.: Milk proteins. Adv. Protein Chemistry 22, 56–234 (1967).Google Scholar
  109. McKenzie, H. A., ed.: “Milk Proteins: Chemistry and Molecular Biology”, 519 pp., Vol.1. New York: Academic Press 1970a.Google Scholar
  110. McKenzie, H. A., ed.: “Milk Proteins: Chemistry and Molecular Biology”, 552 pp., Vol.11. New York: Academic Press 1970b.Google Scholar
  111. McKenzie, L., Fitzgerald, D. K., Ebner, K. E.: Lactose synthetase activities in rat and mouse mammary glands. Biochim. Biophys. Acta 230, 526 (1971).Google Scholar
  112. Mellenberger, R. W., Bauman, D. E., Nelson, D. R.: Metabolic adaptations during lactogenesis. Fatty acid and lactose synthesis in cow mammary tissue. Biochem. J. 136, 741–748 (1973).Google Scholar
  113. Mills, E. S., Topper, Y. J.: Some ultrastructural effects of insulin, hydrocortisone and prolactin on mammary gland explants. J. Cell Biol. 44, 310–328 (1970).Google Scholar
  114. Morré, J. D.: Isolation of Golgi apparatus. Methods in Enzymology 22, 130–148 (1971).Google Scholar
  115. Morré, J.D., Cheetham, R. D., Nyquist, S.E., Ovtracht, L.: A Simplified procedure for the isolation of Golgi apparatus from rat liver. Prep. Biochem. 2, 61–69 (1972).Google Scholar
  116. Morrison, J. F., Ebner, K. E.: Studies on galactosyl transferase. Kinetic investigation with N-acetylglucosamine as the galactosyl group acceptor. J. Biol. Chem. 246, 3977–3984 (1971 a).Google Scholar
  117. Morrison, J. F., Ebner, K. E.: Studies on galactosyl transferase. Kinetic investigation with glucose as the galactosyl acceptor. J. Biol. Chem. 246, 3985–3991 (1971b).Google Scholar
  118. Morrison, J. F., Ebner, K. E.: Studies on galactosyl transferase. Kinetic effects of α-lactalbumin with N-acetylglucosamine and glucose as galactosyl group acceptors. J. Biol. Chem. 246, 3992–3998 (1971c).Google Scholar
  119. Murphy, G., Ariyanayagam, A. D., Kuhn, N. J.: Progesterone and the metabolic control of the lactose biosynthetic pathway during lactogenesis in the rat. Biochem. J. 136, 1105–1116 (1973).Google Scholar
  120. Oka, T., Topper, Y. J.: Is prolactin mitogenic for mammary epithelium? Proc. Natl. Acad. Sci. (U.S.A.) 69, 1693–1696 (1972).Google Scholar
  121. Oka, T.: Spermidine in hormone dependent differentiation of mammary gland in vitro. Science 184, 78–80 (1974).Google Scholar
  122. Owens, I. S., Vonderhaar, B. K., Topper, Y. J.: Concerning the necessary coupling of development to proliferation of mouse mammary epithelial cells. J. Biol. Chem. 248, 472–477 (1973).Google Scholar
  123. Palmiter, R. D.: Hormonal induction and regulation of lactose synthetase in mouse mammary gland. Biochem. J. 113, 409 (1969a).Google Scholar
  124. Palmiter, R. D.: Properties of lactose synthetase from mouse mammary gland: role of a proposed third component. Biochim. Biophys. Acta 178, 35–46 (1969b).Google Scholar
  125. Palmiter, R. D.: What regulates lactose content in milk? Nature 221, 912–914 (1969c).Google Scholar
  126. Patton, S., Fowkes, F. M.: The role of the plasma membrane in the secretion of milk fat. J. Theoret. Biol. 15, 274–281 (1967).Google Scholar
  127. Pedersen, K. O.: Ultracentrifugal studies and electrophoretic studies on the milkp roteins. I. Introduction and preliminary results with fractions from skim milk. Biochem. J. 30, 948–970 (1936).Google Scholar
  128. Perutz, M. F., Muirhead, H., Cox, J. M., Goaman, L. C. G.: Threedimensional fourier synthesis of horse oxyhaemoglobin at 2.8 Å resolution: the atomic model. Nature 219, 131–139 (1968).Google Scholar
  129. Pessen, H., Kumosinski, T. F., Timasheff, S. W.: The use of small-angle X-ray scattering to determine protein conformation. J. Agric. Food. Chem. 19, 698–702 (1971).Google Scholar
  130. Pilson, M. E. Q., Kelly, A. L.: Composition of milk from Zalophus californianus, the California sea lion. Science 135, 104–105 (1962).Google Scholar
  131. Powell, J. T., Brew, K.: Glycosyl transferases of onion stem Golgi membranes. Biochem. J. 142, 203–210 (1974a).Google Scholar
  132. Powell, J. T., Brew, K.: Isolation and characterization of two forms of bovine galactosyl transferase. Eur. J. Biochem. 48, 217–228 (1974b).Google Scholar
  133. Rawitch, A. B.: The rational diffusion of bovine α-lactalbumin: a comparison with egg-white lysozyme. Arch. Biochem. Biophys. 151, 22–27 (1972).Google Scholar
  134. Reiss, O. K., Barry, J. M.: The synthesis of lactose from glucose in the mammary gland. Biochem. J. 55, 783–785 (1953).Google Scholar
  135. Reithel, F. J., Harowitz, M. G., Davidson, H. M., Kittinger, G. N.: Formation of lactose in homogenates of mammary gland. J. Biol. Chem. 194, 839–848 (1952).Google Scholar
  136. Robbins, F. M., Holmes, L. G.: Binding of N-methylnicotinamide chloride by tryptophan residues of α-lactalbumin. J. Biol. Chem. 247, 3062–3065 (1972).Google Scholar
  137. Schachter, H., Jabbal, I., Hudgin, R. L., Pinteric, L., McGuire, E. J., Roseman, S.: Intracellular location of liver sugar nucleotide glycoprotein glycosyl transferases in a Golgi-Rich fraction. J. Biol. Chem. 245, 1090–1100 (1970).Google Scholar
  138. Schanbacher, F. L., Ebner, K. E.: Galactosyl transferase acceptor specificity of the lactose synthetase A protein. J. Biol. Chem. 245, 5057–5061 (1970).Google Scholar
  139. Schmidt, D. V., Walker, L. E., Ebner, K. E.: Lactose synthetase activity in Northern fur seal milk. Biochem. Biophys. Acta 252, 439–442 (1971).Google Scholar
  140. Shaper, J. H., Barker, R., Hill, R. L.: Purification of wheat germ agglutinin by affinity chromatography. Anal. Biochem. 53, 564–570 (1973).Google Scholar
  141. Shotton, D. M., Watson, H. C.: Three-dimensional structure of tosyl-elastase. Nature 225, (1970).Google Scholar
  142. Sommers, P. B., Kronman, M. J., Brew, K.: Molecular conformation and fluorescence properties of α-lactalbumin from four animal species. Biochem. Biophys. Res. Commun. 52, 98–105 (1973).Google Scholar
  143. Sørensen, M., Sørensen, S. P. L.: The proteins in whey. C. r. Trav. Lab. Carlsberg, Ser. Chim. 23, 55–99 (1939).Google Scholar
  144. Spatz, L., Strittmatter, P.: A form of reduced nicotinamide adenine dinucleotide-cytochrome b5reductase containing both the catalytic site and an additional hydrophobic membrane-binding segment. J. Biol. Chem. 248, 793–799 (1973).Google Scholar
  145. Svedberg, T., Pedersen, K. O.: “The Ultracentrif uge” p. 379, Oxford Univ. Press 1940.Google Scholar
  146. Svedberg, T.: The ultracentrifuge and the study of high-molecular compounds. Nature 139, 1051 (1957).Google Scholar
  147. Tamburro, A. M., Jori, G., Vadili, G., Scatturin, A., Saccomani, G.: Studies on the structure in solution of α-lactalbumin. Biochim. Biophys. Acta 263, 704–713 (1972).Google Scholar
  148. Trayer, I. P., Mattock, P., Hill, R. L.: Purification and properties of the A protein from lactose synthetase. Fed. Proc. 29, 597 (1970).Google Scholar
  149. Trayer, I. P., Hill, R. L.: The purification and properties of the A protein of lactose synthetase. J. Biol. Chem. 246, 6666–6675 (1971).Google Scholar
  150. Trayer, I. P., Barker, R., Hill, R. L.: α-Lactalbumin-Sepharose, a specific adsorbent for a galactosyl transferase. Methods in Enzymology, in press (1974).Google Scholar
  151. Turkington, R. W., Brew, K., Vanaman, T. C., Hill, R. L.: The hormonal control of lactose synthetase in the developing mouse mammary gland. J. Biol. Chem. 243, 3382–3387 (1968).Google Scholar
  152. Turkington, R. W., Hill, R. L.: Lactose synthetase: progesterone inhibition of the initiation of α-lactalbumin. Science 163, 1458–1460 (1969).Google Scholar
  153. Vanaman, T. C., Brew, K., Hill, R. L.: The disulfide bonds of bovine α-lactalbumin. J. Biol. Chem. 245, 4583–4590 (1970).Google Scholar
  154. Venkataraman, R., Reithel, F. J.: Carbohydrates of the sapotaceae. I. The origin of lactose in A. Sapota. Arch. Biochem. Biophys. 75, 443–452 (1958).Google Scholar
  155. Vonderhaar, B. K., Wwens, I. S., Topper, Y. J.: An early effect of prolactin on the formation of α-lactalbumin by mouse mammary epithelial cells. J. Biol. Chem. 248, 467–471 (1973).Google Scholar
  156. Warme, P. K., Momany, F. A., Rumball, S. V., Tuttle, R. W., Scheraga, H. A.: Computation of structures of homologuous proteins, α-lactalbumin from lysozyme. Biochemistry 13, 768–781 (1974).Google Scholar
  157. Warren, G. B., Tipton, K. F.: Pig liver pyruvate carboxylase. The reaction pathway for the carboxylation of pyruvate. Biochem. J. 139, 311–302 (1974).Google Scholar
  158. Watkins, W. M., Hassid, W. Z.: The synthesis of lactose by particulate enzyme preparations from guinea pig and bovine mammary glands. J. Biol. Chem. 237, 1432–1440 (1962).Google Scholar
  159. Wheelock, I. V., Rook, J. A. R.: Reviews of the Progress of Dairy Science. C. Dairy Chemistry. The secretion of water and of water-soluble constituents in milk. J. Dairy Res. 34, 273–287 (1967).Google Scholar
  160. Wood, H. G., Schambye, P., Peeters, G. L.: Lactose synthesis: II. The distribution of C14 in lactose of milk from the perfused isolated cow udder. J. Biol. Chem. 226, 1023–1034 (1957a).Google Scholar
  161. Wood, H. G., Siu, P., Schambye, P.: Lactose synthesis. III. The distribution of C14 in lactose of milk after inter-arterial injection of acetate-1-C14. Arch. Biochem. Biophys. 69, 390–404 (1957b).Google Scholar
  162. Wood, H. G., Gillespie, R., Jaffe, S., Hansen, R. G., Hardenbrook, H.: Lactose synthesis. V. C14 in lactose, glycerol and serine as indications of the triose phosphate isomerase reaction and pentose cycle. J. Biol. Chem. 233, 1271–1278 (1958).Google Scholar
  163. Wood, H. G.: My life and carbon dioxide fixation. “Miami Winter Symposium”, The Molecular Basis of Biological Transport, J. R. Woessner, Jr., and F. Huijing, eds., Vol. 3, pp. 1–54. New York: Academic Press, Inc. (1972).Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Keith Brew
  • Robert L. Hill
    • 1
    • 2
  1. 1.Department of BiochemistryUniversity of Miami, School of MedicineMiamiUSA
  2. 2.Department of BiochemistryDuke University, Medical CenterDurhamUSA

Personalised recommendations