Mechanisms of gas exchange in bird lungs

  • Peter Scheid
Chapter
Part of the Reviews of Physiology, Biochemistry and Pharmacology book series (volume 86)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdalla MA, King AS (1975) The functional anatomy of the pulmonary circulation of the domestic fowl. Respir Physiol 23:267–290Google Scholar
  2. Abdalla MA, King AS (1976) Pulmonary arteriovenous anastomoses in the avian lung: do they exist? Respir Physiol 27:187–191Google Scholar
  3. Akester AR (1960) The comparative anatomy of the respiratory pathways in the domestic fowl, pigeon, and domestic duck. J Anat 94:488Google Scholar
  4. Akester AR (1971) The blood vascular system. In: Bell DJ, Freeman BM (eds) Physiology and biochemistry of the domestic fowl, vol 2, Academic Press, London, New YorkGoogle Scholar
  5. Allen RL (1971) The properties and biosynthesis of the hemoglobins. In: Bell DJ, Freeman BM (eds) Physiology and biochemistry of the domestic fowl, vol 2, Academic Press, London, New YorkGoogle Scholar
  6. Andersen HT (1959a) Depression of metabolism in the duck during experimental diving. Acta Physiol Scand 46:234–239Google Scholar
  7. Andersen HT (1959b) A note on the composition of alveolar air in the diving duck. Acta Physiol Scand 46:240–243Google Scholar
  8. Andersen HT (1966) Physiological adaptations in diving vertebrates. Physiol Rev 46:212–243Google Scholar
  9. Andersen HT, Hustvedt BE, Løvø A (1965) Acid-base changes in diving ducks. Acta Physiol Scand 63:128–132Google Scholar
  10. Andersen HT, Løvø A (1967) Indirect estimation of partial pressure of oxygen in arterial blood of diving ducks. Respir Physiol 2:163–167Google Scholar
  11. Antonini E, Brunori M (1971) Hemoglobin and myoglobin in their reaction with ligands. North-Holland, Amsterdam, LondonGoogle Scholar
  12. Bartels H, Hiller G, Reinhardt W (1966) Oxygen affinity of chicken blood before and after hatching. Respir Physiol 1:345–356Google Scholar
  13. Bartlett G (1970) Pattern of phosphate compounds in red blood cells of man and animals. In: Brewer GJ (ed) Red cell metabolism and function. Plenum, New York, London, pp 245–256Google Scholar
  14. Bartlett GR, Borgese TA (1976) Phosphate compounds in red cells of the chicken and duck embryo and hatchling. Comp Biochem Physiol [A] 55:207–210Google Scholar
  15. Bauer C (1974) On the respiratory function of haemolgobin. Rev Physiol Biochem Pharmacol 70:1–31Google Scholar
  16. Baumann FH, Baumann R (1977) A comparative study of the respiratory properties of bird blood. Respir Physiol 31:333–343Google Scholar
  17. Berger M (1974a) Oxygen consumption and power of hovering hummingbirds at varying barometric and oxygen pressures. Naturwissenschaften 9:407Google Scholar
  18. Berger M (1974b) Energiewechsel von Kolibris beim Schwirrflug unter Höhenbedingungen. J Ornithol 115:273–288Google Scholar
  19. Berger M, Hart JS (1968) Ein Beitrag zum Zusammenhang zwischen Stimme und Atmung bei Vögeln. J Ornithol 109:421–424Google Scholar
  20. Berger M, Hart JS (1972) Die Atmung beim Kolibri Amazilia fimbriata während des Schwirrfluges bei verschiedenen Umgebungstemperaturen. J Comp Physiol 81:363–380Google Scholar
  21. Berger M, Hart JS (1974) Physiology and energetics of flight. In: Farner DS, King JR (eds) Avian biology, Vol II. Academic Press, New York, pp 415–477Google Scholar
  22. Bernstein MH (1976) Ventilation and respiratory evaporation in the flying crow, Corvus ossifragus. Respir Physiol 26:371–382Google Scholar
  23. Bernstein MH, Schmidt-Nielsen K (1974) Ventilation and oxygen extraction in the crow. Respir Physiol 21:393–401Google Scholar
  24. Bethe A (1925) Atmung: Allgemeines und Vergleichendes. In: Bethe A, Bergmann G v, Embden G, Ellinger A (eds) Handbuch der normalen und pathologischen Physiologie, Vol 2, Springer, Berlin, pp 1–36Google Scholar
  25. Biggs PM, King AS (1957) A new experimental approach to the problem of the air pathway within the avian lung. J Physiol 138:282–299Google Scholar
  26. Borgese TA, Bertles JF (1965) Hemoglobin heterogeneity: Embryonic hemologbin in the duckling and its disappearance in the adult. Science 148:509–511Google Scholar
  27. Borgese T, Lampert LM (1975) Duck red cell 2,3 diphosphoglycerate: its presence in the embryo and its disappearance in the adult. Biochem Biophys Res Comm 65:822–827Google Scholar
  28. Bouverot P (1978) Control of breathing in birds as compared with mammals. Physiol Rev 58:604–655Google Scholar
  29. Bouverot P, Dejours P (1971) Pathway of respired gas in the air sacs-lung apparatus of fowl and ducks. Respir Physiol 13:330–342Google Scholar
  30. Bouverot P, Hildwein G, LeGoff D (1974) Evaporative water loss, respiratory pattern, gas exchange, and acid-base balance during thermal panting in Pekin ducks under moderate heat exposure. Respir Physiol 21:255–269Google Scholar
  31. Bouverot P, Hildwein G, Oulhen P (1976) Ventilatory and circulatory O2 convection at 4000 m in pigeon at neutral or cold temperature. Respir Physiol 28:371–385Google Scholar
  32. Brackenbury JH (1971) Airflow dynamics in the avian lung as determined by direct and indirect methods. Respir Physiol 13:319–329Google Scholar
  33. Brackenbury JH (1972a) Lung-air sac anatomy and respiratory pressures in the bird. J Exp Biol 57:543–550Google Scholar
  34. Brackenbury JH (1972b) Physical determinants of air flow pattern within the avian lung. Respir Physiol 15:384–397Google Scholar
  35. Brackenbury JH (1979) Corrections to the Hazelhoff model of airflow in the avian lung. Respir Physiol 36:143–154Google Scholar
  36. Brandes G (1924) Beobachtungen und Reflexionen über die Atmung der Vögel. Pfluegers Arch 203:492–511Google Scholar
  37. Bretz WL, Schmidt-Nielsen K (1970) Patterns of air flow in the duck lung. Fed Proc 29:662Google Scholar
  38. Bretz WL, Schmidt-Nielsen K (1971) Bird respiration: Flow patterns in the duck lung. J Exp Biol 54:103–118Google Scholar
  39. Bretz WL, Schmidt-Nielsen K (1972) The movement of gas in the respiratory system of the duck. J Exp Biol 56:57–65Google Scholar
  40. Burger RE, Lorenz FW (1960) Artificial respiration in birds by unidirectional airflow. Poult Sci 39:236–237Google Scholar
  41. Burger RE, Meyer M, Graf W, Scheid P (1979) Gas exchange in the parabronchial lung of birds: experiments in unidirectionally ventialted ducks. Respir Physiol 36:19–37Google Scholar
  42. Burton RR, Smith AH (1968) Blood and air volumes in the avian lung. Poult Sci 47:85–91Google Scholar
  43. Butler PJ (1970) The effect of progressive hypoxia on the respiratory and cardiovascular systems of the pigeon and duck. J Physiol (Lond) 201:527–538Google Scholar
  44. Butler PJ, West NH, Jones DR (1977) Respiratory and cardiovascular response of the pigeon to sustained level flight in a wind tunnel. J Exp Biol 71:7–26Google Scholar
  45. Calder WA (1970) Respiration during song in the canary (Serinus canaria). Comp Biochem Physiol 32:251–258Google Scholar
  46. Calder WA, King JR (1974) Thermal and caloric relations of birds. In: Farner DS, King JR (eds) Avian biology. Vol IV. Academic Press, New York, pp 259–413Google Scholar
  47. Calder WA, Schmidt-Nielsen K (1966) Evaporative cooling and respiratory alkalosis in the pigeon. Proc. Natl. Acad. Sci USA 55:750–756Google Scholar
  48. Calder WA, Schmidt-Nielsen K (1968) Panting and blood carbon dioxide in birds. Am J Physiol 215:477–482Google Scholar
  49. Campana A (1875) Recherches d'anatomie, de physiologie et d'organogénie pour la détermination des lois de la genèse et de l'évolution des espèces animales. I. mémoire: Physiologie de la respiration chez les oiseaux, anatomie de l'appareil pneumatiquepulmonaire, des faux diaphragmes des séreuses et de l'intestin chez le poulet. Masson, ParisGoogle Scholar
  50. Clausen G, Sanson R, Storesund A (1971) The HbO2 dissociation curve of the fulmar and the herring gull. Respir Physiol 12:66–70Google Scholar
  51. Cohn JE, Shannon R (1968) Respiration in unanesthetized geese. Respir Physiol 5:259–268Google Scholar
  52. Coitier V (1573, cit. after Campana, 1875) Anatomia avium. In: Externarum et internarum praecipalium humani corporis partium tabulae atque anatomicae exercitationes. NurembergGoogle Scholar
  53. Colacino JM, Hector DH, Schmidt-Nielsen K (1977) Respiratory responses of ducks to simulated altitude. Respir Physiol 29:265–281Google Scholar
  54. Comroe JH (1965) Physiology of respiration. Year Book Medical Publishers, ChicagoGoogle Scholar
  55. Crank WD, Gallagher RR (1978) Theory of gas exchange in the avian parabronchus. Respir Physiol 35:9–25Google Scholar
  56. Crawford EC Jr, Kampe G (1971) Resonant panting in pigeons. Comp Biochem Physiol [A] 40:549–552Google Scholar
  57. Danzer LH, Cohn JE (1967) The dissociation curve of the goose blood. Respir Physiol 3:302–306Google Scholar
  58. Davies DG, Dutton RE (1975) Gas-blood PCO 2 gradients during avian gas exchange. J Appl Physiol 39:405–410Google Scholar
  59. Dawson WR (1975) Avian physiology. Ann Rev Physiol 37:441–465Google Scholar
  60. Dejours P (1975) Principles of comparative respiratory physiology. North Holland, Amsterdam, OxfordGoogle Scholar
  61. Dotterweich H (1930a) Die Bahnhofstaube und die Frage nach dem Weg der Atemluft. Zool Anz 90:259–262Google Scholar
  62. Dotterweich H (1930b) Versuch über den Weg der Atemluft in der Vogellunge. Z Vergl Physiol 11:271–284Google Scholar
  63. Dotterweich H (1933) Ein weiterer Beitrag zur Atmungsphysiologie der Vögel. Z Vergl Physiol 18:803–809Google Scholar
  64. Dotterweich H (1936) Die Atmung der Vögel. Z Vergl Physiol 23:744–770Google Scholar
  65. Duhm J (1976) Dual effect of 2,3-Diphosphoglycerate on the Bohr effects of human blood. Pfluegers Arch 363:55–60Google Scholar
  66. Duncker HR (1971) The lung air sac system of birds. Ergeb Anat Entwicklungsgesch 45, Heft 6Google Scholar
  67. Duncker HR (1972) Structure of avian lungs. Respir Physiol 14:44–63Google Scholar
  68. Duncker HR (1974) Structure of the avian respiratory tract. Respir Physiol 22:1–19Google Scholar
  69. Escobedo MA, Samaniego FC, Gonzalez DV, Bernstein MH (1978) Respiration in pigeons at simulated high altitudes. Fed Proc 37:472Google Scholar
  70. Fedde MR (1976) Respiration. In: Sturkie PD (ed) Avian physiology. Springer, Berlin, Heidelberg, New York, pp 122–145Google Scholar
  71. Fedde MR, Burger RE, Kitchell RL (1964) Anatomic and electromyographic studies of the costopulmonary muscles in the cock. Poult Sci 43:1177–1184Google Scholar
  72. Freeman BM, Vince MA (1974) Development of the avian embryo. Chapman and Hall, LondonGoogle Scholar
  73. Gaunt AS, Hector D, Gaunt S (1973a) Pressure events, mini-breaths and avian vocalization. Am Zool 13:1346–1347Google Scholar
  74. Gaunt AS, Stein RC, Gaunt SLL (1973b) Pressure and air flow during distress calls of the starling, Sturnus vulgaris (aves; passeriformes). J Exp Zool 183:241–262Google Scholar
  75. Gehr P, Bachofen M, Weibel ER (1978) The normal human lung: ultrastructure and morphometric estimation of diffusion capacity. Respir Physiol 32:121–140Google Scholar
  76. Graham JDP (1939) The air stream in the lung of the fowl. J Physiol 97:133–137Google Scholar
  77. Haab P, Duc G, Stucki R, Piiper J (1964) Les échanges gazeux en hypoxie et la capacité de diffusion pour l'oxygène chez le chien narcotisé. Helv Physiol Acta 22:203–227Google Scholar
  78. Hansen H (1950) Wärmeübertragung im Gegenstrom, Gleichstrom und Kreuzstrom. Springer, Berlin, Göttingen, HeidelbergGoogle Scholar
  79. Harveus G (1651, cit. after Duncker, 1971) Exercitationes de generatione animalium. LondonGoogle Scholar
  80. Hashimoto K, Wilt FH (1966) The heterogeneity of chicken hemoglobin. Proc Natl Acad Sci USA 56:1477–1483Google Scholar
  81. Hazelhoff EH (1943) Bouw en functie van de vogellong. Versl gewone Vergad afd Natuurk Kon Ned Akad Wet 52:391–400. English translation (1951) Structure and function of the lungs of birds. Poult Sci 30:3–10Google Scholar
  82. Hirsowitz LA, Fell K, Torrance JD (1977) Oxygen affinity of avian blood. Respir Physiol 31:51–62Google Scholar
  83. Holle JP, Heisler N, Scheid P (1978) Blood flow distribution in the duck lung and its control by respiratory gases. Am J Physiol 234:R146–R154Google Scholar
  84. Holle JP, Meyer M, Scheid P (1977) Oxygen affinity of duck blood determined by in vivo and in vitro technique. Respir Physiol 29:355–361Google Scholar
  85. Hudson DM, Bernstein MH (1978) Respiratory ventilation during steady state flight in the white-necked raven, Corvus cryptoleucus. Fed Proc 37:472Google Scholar
  86. Huisman THJ, Schillhorn van Veen JM (1964) Studies on animal hemoglobins. III. The possible role of intracellular inorganic phosphate on the oxygen equilibrium of the hemoglobin in the developing chicken. Biochim Biophys Acta 88:367–374Google Scholar
  87. Isaacks RE, Harkness DR, Sampsell RN, Adler JL, Kim CY, Goldman PH (1976a) Studies on avian erythrocyte metabolism. IV. Relationship between the major phosphorylated metabolic intermediates and oxygen affinity of whole blood in adults and embryos in several galliforms. Comp Biochem Physiol [A] 55:29–33Google Scholar
  88. Isaacks RE, Harkness DR, Adler JL, Goldman PH (1976b) Studies on avian erythrocyte metabolism. Effect of organic phosphate on oxygen affinity of embryonic and adult-type hemoglobins of the chick embryo. Arch Biochem Biophys 173:114–120Google Scholar
  89. Jackson DC, Schmidt-Nielsen K (1964) Countercurrent heat exchange in the respiratory passages. Proc Natl Acad Sci USA 51:1192–1197Google Scholar
  90. James AE, Hutchins G, Bush M, Natarajan TK, Burns B (1976) How birds breathe: correlation of radiographic with anatomical and pathological studies. J Am Vet Radiol Soc 17:77–86Google Scholar
  91. Jammes Y, Bouverot P (1975) Direct PCO 2 measurements in the dorsobronchial gas of awake Peking ducks: evidence for a physiological role of the neopulmo in respiratory gas exchanges. Comp Biochem Physiol [A] 52:635–637Google Scholar
  92. Johnson LF, Tate ME (1969) Structure of “phytic acid”. Can J Chem 47:63–73Google Scholar
  93. Jones DR (1976) The control of breathing in birds with particular reference to the initiation and maintenance of diving apnea. Fed Proc 35:1975–1982Google Scholar
  94. Jones DR, Holeton GF (1972a) Cardiovascular and respiratory responses of ducks to progressive hypocapnic hypoxia. J Exp Biol 56:657–666Google Scholar
  95. Jones DR, Holeton GF (1972b) Cardiac output of ducks during diving. Comp Biochem Physiol [A] 41:639–645Google Scholar
  96. Jones DR, Johansen K (1972) The blood vascular system of birds. In: Farner DS, King JR (eds) Avian biology. Vol II, Academic Press, New York, London, pp 157–285Google Scholar
  97. Jones JD (1972) Comparative Physiology of Respiration. Arnold, LondonGoogle Scholar
  98. Kawashiro T, Scheid P (1975) Arterial blood gases in undisturbed resting birds: measurements in chicken and duck. Respir Physiol 23:337–342Google Scholar
  99. Kiley JP, Kuhlmann WD, Fedde MR (1978) Ventilation and blood gas tensions in exercising ducks. Physiologist 21:64Google Scholar
  100. King AS (1966) Structural and functional aspects of the avian lungs and air sacs. Int Rev Gen Exp Zool 2:171–267Google Scholar
  101. King AS (1975) Aves, respiratory system. In: Getty R (ed) The anatomy of the domestic animals, 5th edn. Saunders, PhiladelphiaGoogle Scholar
  102. King AS (1979) Systema respiratorium. In: Baumel JJ, King AS, Lucas AM, Breazile J, Evans H (eds) Nomina Anatomica Avium. Academic Press, LondonGoogle Scholar
  103. King AS, Cowie AF (1969) The functional anatomy of the bronchial muscle of the bird. J Anat 105:323–336Google Scholar
  104. King AS, Molony V (1971) The anatomy of respiration. In: Bell DK, Freeman BM (eds) Physiology and biochemistry of the domestic fowl. Academic Press, LondonGoogle Scholar
  105. King AS, Payne DC (1958) The volume of the lungs and air sacs in Gallus Domesticus. J Anat 92:656Google Scholar
  106. King AS, Payne DC (1960) Does the air circulate in the avian lung? Anat Rec 136:223Google Scholar
  107. King AS, Payne DC (1962) The maximum capacities of the lungs and air sacs of Gallus domesticus. J Anat 96:495–503Google Scholar
  108. King JR, Farner DS (1964) Terrestrial animals in humid heat: birds. In: Dill DB, Adolph EF, Wilber CG (eds) Handbook of physiology, Sect. 4: Adaptation to the environment. Amer Physiol Soc, Washington DC, pp 603–624Google Scholar
  109. Kooyman GL, Schroeder JP, Greene DG, Smith VA (1973) Gas exchange in penguins during simulated dives of 30 and 68 m. Am J Physiol 225:1467–1471Google Scholar
  110. Lasiewski RC (1972) Respiratory function in birds. In: Farner DS, King JR (eds) Avian biology, Vol II, Academic Press, New York, pp 287–342Google Scholar
  111. Lasiewski RC, Calder WA (1971) A preliminary allometric analysis of respiratory variables in resting birds. Respir Physiol 11:152–166Google Scholar
  112. Lasiewski RC, Dawson WR (1967) A re-examination of the relation between standard metabolic rate and body weight in birds. Condor 69:13–23Google Scholar
  113. Lefebvre EA (1964) The use of D2O18 for measuring energy metabolism in Columbia livia at rest and in flight. Auk 81:403–416Google Scholar
  114. Lenfant C, Kooyman GL, Elsner R, Drabek CM (1969) Respiratory function of blood of the Adelie penguin Pygoscelis adeliae. Am J Physiol 216:1598–1600Google Scholar
  115. Linsley JG, Burger RE (1964) Respiratory and cardiovascular responses in the hyperthermic domestic cock. Poult Sci 43-291–305Google Scholar
  116. Lomholt JP (1975) Oxygen affinity of bird embryo blood. J Comp Physiol 99:339–343Google Scholar
  117. Lord RD, Bellrose FC, Cochran WW (1962) Radiotelemetry of the respiration of a flying duck. Science 137:39–40Google Scholar
  118. Lutz PL, Schmidt-Nielsen K (1977) Effect of simulated altitude on blood gas transport in the pigeon. Respir Physiol 30:383–388Google Scholar
  119. Lutz PL, Longmuir IS, Tuttle JV, Schmidt-Nielsen K (1973) Dissociation curve of bird blood and effect of red cell oxygen consumption. Respir Physiol 17:269–275Google Scholar
  120. Lutz PL, Longmuir IS, Schmidt-Nielsen K (1974) Oxygen affinity of bird blood. Respir Physiol 20:325–330Google Scholar
  121. Macklem PT, Bouverot P, Scheid P (to be published) Measurement of the distensibility of the parabronchi in the duck lung. Respir PhysiolGoogle Scholar
  122. Magnussen H, Willmer H, Scheid P (1976) Gas exchange in air sacs: contribution to respiratory gas exchange in ducks. Respir Physiol 26:129–146Google Scholar
  123. Makowski J (1938) Beitrag zur Klärung des Atmungsmechanismus der Vögel. Pfluegers Arch 240:407–418Google Scholar
  124. Marder J, Arad Z (1975) The acid base balance of Abdim's stork (Spenorhynchus abdimii) during thermal panting. Comp Biochem Physiol A 51:887–889Google Scholar
  125. Marder J, Arad Z, Gafni M (1974) The effect of high ambient temperature on acid-base balance of panting Bedouin fowl (Galls domesticus). Physiol Zool 47:180–189Google Scholar
  126. Menuam B, Richards SA (1975) Observations on the sites of respiratory evaporation in the fowl during thermal panting. Respir Physiol 25:39–52Google Scholar
  127. Meyer M, Worth H, Scheid P (1976) Gas-blood CO2 equilibration in parabronchial lungs of birds. J Appl Physiol 41:302–309Google Scholar
  128. Meyer M, Holle JP, Scheid P (1978) Bohr effect induced by CO2 and fixed acid at various levels of O2 saturation in duck blood. Pfluegers Arch 376:237–240Google Scholar
  129. Milsom WK, Johansen K, Millard RW (1973) Blood respiratory properties in some antarctic birds. Condor 75:472–474Google Scholar
  130. Misson BH, Freeman BM (1972) Organic phosphates and oxygen affinity of chick blood before and after hatching. Respir Physiol 14:343–352Google Scholar
  131. Molony V, Graf W, Scheid P (1976) Effects of CO2 on pulmonary air flow resistance in the duck. Respir Physiol 26:333–349Google Scholar
  132. Murrish DE (1973) Respiratory heat and water exchange in penguins. Respir Physiol 19:262–270Google Scholar
  133. Ochiai T, Gotoh T, Shikama K (1972) Effects of intracellular organic phosphates on the oxygen equilibrium curve of chicken hemoglobin. Arch Biochem Biophys 149:316–322Google Scholar
  134. Oshima M, Taylor TG, Williams A (1974) Variations in the concentration of phytic acid in the blood of the domestic fowl. Biochm J 92:42–46Google Scholar
  135. Parry K, Yates MS (1978) Observations on the avian pulmonary and bronchial circulation using labelled microspheres. J Anat 127:199Google Scholar
  136. Parry K, Yates MS (to be published) Observations on the avian pulmonary and bronchial circulation using labelled microspheres. Respir PhysiolGoogle Scholar
  137. Pattle RE (1965) Surface lining of lung alveoli. Physiol Rev 45:48–79Google Scholar
  138. Pattle RE (1978) Lung surfactant and lung lining in birds. In: Piiper J (ed) Respiratory function in birds, adult and embryonic. Springer, Berlin, Heidelberg, New York, pp 23–32Google Scholar
  139. Pennycuick CJ (1972) Animal flight. Arnold, LondonGoogle Scholar
  140. Pennycuick CJ (1975) Mechanics of flight. In: Farner DS, King JR (eds) Avian biology, Vol. V, Academic Press, New York, London, pp 1–75Google Scholar
  141. Petschow D, Würdinger I, Baumann R, Duhm J, Braunitzer G, Bauer C (1977) Causes of high blood O2 affinity of animals living at high altitude. J Appl Physiol 42:139–143Google Scholar
  142. Piiper J (ed) (1972) Comparative physiology of respiration in vertebrates. Respir Physiol 14:1–236Google Scholar
  143. Piiper J (ed) (1978a) Respiratory function in birds, adult and embryonic. Springer, Berlin, Heidelberg, New YorkGoogle Scholar
  144. Piiper J (1978b) Origin of carbon dioxide in caudal air sacs of birds. In: Piiper J (ed) Respiratory function in birds, adult and embryonic. Springer, Berlin, Heidelberg, New York, pp 148–153Google Scholar
  145. Piiper J, Scheid P (1973) Gas exchange in avian lungs: models and experimental evidence. In: Bolis L, Schmidt-Nielsen K, Maddrell SHP (eds) Comparative physiology. North Holland, Amsterdam, pp 161–185Google Scholar
  146. Piiper J, Scheid P (1975) Gas transport efficacy of gills, lungs and skin: theory and experimental data. Respir Physiol 23:209–221Google Scholar
  147. Piiper J, Scheid P (1977) Comparative physiology of respiration: Functional analysis of gas exchange organs in vertebrates. In: Widdicombe JG (ed) International review of physiology, series II, respiratory physiology. University Park Press, Baltimore, pp 219–253Google Scholar
  148. Piiper J, Scheid P (1978) Series ventilation and stratified inhomogeneity in avian vs. mammalian lungs. Physiologist 21:92Google Scholar
  149. Piiper J, Scheid P (to be published) Blood-gas equilibration in lungs. In: West JB (ed) Pulmonary gas exchange. Academic Press, New YorkGoogle Scholar
  150. Piiper J, Huch A, Kötter D, Herbst R (1969) Pulmonary diffusing capacity at basal and increased O2 uptake levels in anesthetized dogs. Respir Physiol 6:219–232Google Scholar
  151. Piiper J, Drees F, Scheid P (1970) Gas exchange in the domestic fowl during spontaneous breathing and artificial ventilation. Respir Physiol 9:234–245Google Scholar
  152. Piiper J, Dejours P, Haab P, Rahn H (1971) Concepts and basic quantities in gas exchange physiology. Respir Physiol 13:292–304Google Scholar
  153. Policard A, Collet A, Martin JC (1962) La surface d'échange air-sang dans le poumon des oiseaux. Etude au microscope électronique. Z Zell Mikrosk Anat 57:37–46Google Scholar
  154. Portier P (1928) Sur le rôle physiologique des sacs aériens des oiseaux. Compt Rend Soc Biol 99:1327–1329Google Scholar
  155. Powell FL, Scheid P, Gratz RK, Geiser J (1978) Efficacy of aerodynamic valving in avian lungs during inspriation. Fed Proc 37:472Google Scholar
  156. Ramirez JM, Bernstein MH (1976) Compound ventilation during thermal panting in pigeons: a possible mechanism for minimizing hypocapnic alkalosis. Fed Proc 35:2562–2565Google Scholar
  157. Romanoff A (1967) Biochemistry of the avian embryo. Wiley, New York, London, SydneyGoogle Scholar
  158. Romanoff AL, Romanoff AJ (1949) The avian egg. Wiley, New YorkGoogle Scholar
  159. Rowell LB (1974) Human cardiovascular adjustments to exercise and thermal stress. Physiol Rev 54:75–159Google Scholar
  160. Scharnke H (1938) Experimentelle Beiträge zur Kenntnis der Vogelatmung. Z Vergl Physiol 25:548–583Google Scholar
  161. Scheid P (ed) (1974) Receptors and control of respiration in birds. Respir Physiol 22:1–216Google Scholar
  162. Scheid P (1978a) Analysis of gas exchange between air capillaries and blood capillaries in avian lungs. Respir Physiol 32:27–49Google Scholar
  163. Scheid P (1978b) Estimation of effective parabronchial gas volume during intermittent ventilatory flow: theory and application in the duck. Respir Physiol 32:1–14Google Scholar
  164. Scheid P, Kawashiro T (1975) Metabolic changes in avian blood and their effects on determination of blood gases and pH. Respir Physiol 23:291–300Google Scholar
  165. Scheid P, Piiper J (1970a) Analysis of gas exchange in the avian lung: theory and experiments in the domestic fowl. Respir Physiol 9:246–262Google Scholar
  166. Scheid P, Piiper J (1970b) Direkte Messung der Strömungsrichtung der Atemluft in der Entenlunge. Pfluegers Arch 319:R59Google Scholar
  167. Scheid P, Piiper J (1971) Direct measurement of the pathway of respired gas in duck lungs. Respir Physiol 11:308–314Google Scholar
  168. Scheid P, Piiper J (1972) Cross-current gas exchange in avian lungs: effects of reversed parabronchial air flow in ducks. Respir Physiol 16:304–312Google Scholar
  169. Scheid P, Piiper J (to be published) Intrapulmonary gas mixing and stratification. In: West JB (ed) Pulmonary gas exchange. Academic Press, New York, LondonGoogle Scholar
  170. Scheid P, Slama H (1975) Remote-controlled device for sampling arterial blood in unrestrained animals. Pfluegers Arch 356:373–376Google Scholar
  171. Scheid P, Slama H, Piiper J (1972) Mechanisms of unidirectional flow in parabronchi of avian lungs: measurements in duck lung preparations. Respir Physiol 14:83–95Google Scholar
  172. Scheid P, Slama H, Gatz RN, Fedde MR (1974a) Intrapulmonary CO2 receptors in the duck: III. Functional localization. Respir Physiol 22:123–136Google Scholar
  173. Scheid P, Slama H, Willmer H (1974b) Volume and ventilation of air sacs in ducks studied by inert gas wash-out. Respir Physiol 21:19–36Google Scholar
  174. Scheid, P, Worth H, Holle JP, Meyer M (1977) Effects of oscillating and intermittent ventilatory flow on efficacy of pulmonary O2 transfer in the duck. Respir Physiol 31:251–258Google Scholar
  175. Scheid P, Gratz RK, Geiser J, Powell FL (1978) Patterns of respiratory gases in the bronchi of spontaneously breathing ducks. Pfluegers Arch [Suppl.] 131:R36Google Scholar
  176. Scheipers G, Kawashiro T, Scheid P (1975) Oxygen and carbon dioxide dissociation of duck blood. Respir Physiol 24:1–73Google Scholar
  177. Schmidt-Nielsen K (1971) How birds breathe. Sci Am No 6, 225:72–79Google Scholar
  178. Schmidt-Nielsen K (1972) How animals work. Cambridge University Press, CambridgeGoogle Scholar
  179. Schmidt-Nielsen K (1975) Recent advances in avian respiration. Symp Zool Soc (Lond) 35:33–47Google Scholar
  180. Schmidt-Nielsen K, Kanwisher J, Lasiewski RC, Cohn JE, Bretz WL (1969) Temperature regulation and respiration in the ostrich. Condor 71:341–352Google Scholar
  181. Schmidt-Nielsen K, Hainsworth FR, Murrish DE (1970) Counter-current heat exchange in the respiratory passages: effect on water and heat balance. Respir Physiol 9:263–276Google Scholar
  182. Severinghaus JW (1964) Blood gas concentrations. In: Fenn WO, Rahn H (eds) Handbook of physiology, Sect. 3: Respiration, Vol II. Am Physiol Soc, Washington DC, pp 1475–1487Google Scholar
  183. Shepard RH, Sladen BK, Peterson N, Enns T (1959) Path taken by gases through the respiratory system of the chicken. J Appl Physiol 14:733–735Google Scholar
  184. Siegwart B, Gehr P, Gil J, Weibel ER (1971) Morphometric estimation of pulmonary diffusion capacity. IV. The normal dog lung. Respir Physiol 13:141–159Google Scholar
  185. Simons JA (1966) The ontogeny of the multiple molecular forms of hemoglobin in the developing chick under normal and experimental conditions. J Exp Zool 162:219–230Google Scholar
  186. Stanislaus M (1937) Untersuchungen an der Kolibrilunge. Z Morphol Ökol Tiere 33:261–289Google Scholar
  187. Tomlinson JT (1963) Breathing of birds in flight. Condor 65:514–516Google Scholar
  188. Tomlinson JT, McKinnon RS (1957) Pigeon wing-beats synchronized with breathing. Condor 59:401Google Scholar
  189. Torre-Bueno JR (1978) Respiration during flight in birds. In: Piiper J (ed) Respiratory function in birds, adult and embryonic. Springer, Berlin, Heidelberg, New York, pp 89–94Google Scholar
  190. Tucker VA (1966) Oxygen consumption of a flying bird. Science 154:150–151Google Scholar
  191. Tucker VA (1968a) Respiratory physiology of house sparrows in relation to high-altitude flight. J Exp Biol 48:55–66Google Scholar
  192. Tucker VA (1968b) Respiratory exchange and evaporative water loss in the flying budgerigar. J Exp Biol 48:67–88Google Scholar
  193. Tucker VA (1974) Energetics of natural avian flight. In: Paynter RA (ed) Avian energetics. Nuttall Ornithological Club, Cambridge Mass., pp 298–333Google Scholar
  194. Vandecasserie C, Schnek AG, Léonis J (1971) Oxygen-affinity studies of avian hemoglobins. Chicken and pigeon. Eur J. Biochem 24:284–287Google Scholar
  195. Vandecasserie C, Paul C, Schnek AG, Léonis J (1973) Oxygen affinity of avian hemoglobins. Comp Biochem Physiol [A] 44:711–718Google Scholar
  196. Vos HF (1935) Über den Weg der Atemluft in der Entenlunge. Z Vergl Physiol 21:552:578Google Scholar
  197. Walter WG (1934) Beiträge zur Frage über den Weg der Luft in den Atmungsorganen der Vögel. Arch Neerl Physiol 19:529–537Google Scholar
  198. Weibel ER (1963) Morphometry of the human lung. Springer, Berlin, Heidelberg, New YorkGoogle Scholar
  199. Weibel ER (1972) Morphometric estimation of pulmonary diffusion capacity. V. Comparative morphometry of alveolar lungs. Respir Physiol 14:26–43Google Scholar
  200. Weibel ER (1973) Morphological basis of alveolar capillary gas exchange. Physiol Rev 53:419–495Google Scholar
  201. Weingarten JP, Rollema HS, Bauer C, Scheid P (1978) Effects of inositol hexaphosphate on the Bohr effect induced by CO2 and fixed acid in chicken hemoglobin. Pfluegers Arch 377:135–141Google Scholar
  202. Wells RMG (1976) The oxygen affinity of chicken hemoglobin in whole blood and erythrocyte suspensions. Respir Physiol 27:21–31Google Scholar
  203. West NH, Bamford OS, Jones DR (1977) A scanning electron microscopy study of the microvasculature of the avian lung. Cell Tissue Res 176:553–564Google Scholar
  204. White FN (1978) Comparative aspects of vertebrate cardiorespiratory physiology. Ann Rev Physiol 40:471–499Google Scholar
  205. Zeuthen E (1942) The ventilation of the respiratory tract in birds. Kgl Dans Vidensk Selsk Biol Med 17:1–50Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Peter Scheid
    • 1
  1. 1.Abteilung PhysiologieMax-Planck-Institut für experimentelle MedizinGöttingenFRG

Personalised recommendations