Advertisement

The automata theory package omega

  • J. Vöge
  • S. Ulbrand
  • O. Matz
  • N. Buhrke
Contributed Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1436)

Abstract

In this paper we present omega, a package of algorithms from the theory of ω automata. It is a growing collection of procedures which at the moment encompasses constructions like: inclusion tests for regular ω languages, conversion of acceptance conditions, Safra's determinization algorithm, construction of strategies in infinite games.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [ATUV9]
    M. Ackermann, W. Thomas, S. Ulbrand, and J. Vöge, Report on the Program omega, to appear, 1997.Google Scholar
  2. [BLV96]
    N. Buhrke, H. Lescow, and J. Vöge, Strategy construction in infinite games with streett and robin chain winning conditions, TACAS'96 (T. Magaria and B. SteRen, eds.), Lect. Notes Comput. Sci., vol. 1055, Springer-Verlag, 1996, pp. 207–225.Google Scholar
  3. [CBK90]
    E. M. Clarke, I. A. Browne, and R. P. Kurshan, A unified approach for showing language containment and equivalence between various types of ω automata, CAAP'90 (A. Arnold, ed.), LNCS, vol. 431, Springer-Verlag, 1990, pp. 103–116.Google Scholar
  4. [EL86]
    E. A. Emerson and C. L. Lei, Temporal reasoning under generalized fairness constraints, 3rd Annual Symp. on Theoretical Aspects of Computer Science (Berlin) (B. Monien and G. Vidai-Naquet, eds.), LNCS, vol. 208, Springer-Verlag, 1986, pp. 21–36.Google Scholar
  5. [Eme85]
    E. A. Emerson, Automata, tableaux, and temporal logics, Logics of Programs (Berlin, Heidelberg, New York) (R. Parikh, ed.), LNCS, vol. 193, Springer-Verlag, 1985, pp. 79–88.Google Scholar
  6. [LV97]
    H. Lescow and J. Vöge, Minimal separating sets for mutter automata, this volume.Google Scholar
  7. [McN93]
    R. McNaughton, Infinite games played on finite graphs, Ann. Pure Appl. Logic 65 (1993), 149–184.Google Scholar
  8. [MMP+95]
    O. Matz, A. Miller, A. Potthoff, W. Thomas, and E. Valkema, Report on the Program AMoRE, Tech. Report 9507, Inst. f. Informatik u. Prakt. Math., CAU Kiel, 1995.Google Scholar
  9. [Saf88]
    S. Safra, On the complexity of w-automata, Proc. 29th IEEE Symp. on Foundations of Computer Science, 1988 pp. 319–327.Google Scholar
  10. [Tho90]
    W. Thomas, Automata on infinite objects, Handbook of Theoretical Computer Science (Amsterdam) (Jan van Leeuwen, ed.), vol. B, Elsevier, Amsterdam, 1990, pp. 135–191.Google Scholar
  11. [Tho95]
    W. Thomas, On the synthesis of strategies in infinite games, STACS 95, LNCS, vol. 900, Springer-Verlag, 1995, pp. 1–13.Google Scholar
  12. [Tho96]
    W. Thomas, Languages, automata, and logic, Handbook of Formal Language Theory (New York) (G. Rozenberg and A. Salomaa, eds.), vol. III, Springer-Verlag, New York, 1996, (to appear).Google Scholar
  13. [Wag77]
    K. Wagner, Eine topologische Charakterisierung einiger Klassen regulärer Folgenmengen, Elektronische Informationsverarbeitung und Kybernetik 13 (1977), no. 9, 473–487.Google Scholar
  14. [WY95]
    Th. Wilke and H. Yoo, Computing the Wadge degree, the Lifshitz degree, and the Rabin index of a regular language of infinite words in polynomial time, Trees in Algebra and Programming-CAAP '95 (P.D. Moses et al., ed.), LNCS, vol. 915, Springer-Verlag, 1995, pp. 288–302.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • J. Vöge
    • 1
  • S. Ulbrand
    • 1
  • O. Matz
    • 1
  • N. Buhrke
    • 1
  1. 1.Institut für Informatik und Praktische MathematikChristian-Albrechts-Universität KielKiel

Personalised recommendations