Skip to main content

Regulation of gene expression by prolactin

  • Chapter
  • First Online:

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 124))

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams JB (1992) Human breast cancer: concerted role of diet, prolactin and adrenal C195-steroids in tumorgenesis. Int J Cancer 50:854–858

    Google Scholar 

  • Ali S, Pellegrini I, Kelly PA (1991) A prolactin-dependent immune cell line (Nb2) expresses a mutant form of prolactin receptor. J Biol Chem 266:20110–20117

    Google Scholar 

  • Ali S, Edery M, Pellegrini I, Lesueur L, Paly J, Djiane J, Kelly PA (1992) The Nb2 form of prolactin receptor is able to activate a milk protein gene promoter. Mol Endocrinol 6:1242–1248

    Google Scholar 

  • Amit T, Hochberg Z, Waters MJ, Barkey RJ (1992) Growth hormone-binding and prolactinbinding proteins in mammalian serum. Endocrinology 131:1793–1803

    Google Scholar 

  • Arey BJ, Averill RLW, Freeman ME (1989) A sex-specific endogenous stimulatory rhythm regulating prolactin secretion. Endocrinology 124:119–123

    Google Scholar 

  • Argetsinger LS, Campell GS, Yang X, Witthuhn BA, Silvennoinen O, Ihle JN, Carter-Su C (1993) Identification of JAK2 as a growth hormone receptor-associated tyrosine kinase. Cell 74:237–244

    Google Scholar 

  • Ball RK, Ziemiecki A, Schoenenberger CA, Reichmann E, Redmond SMS, Groner B (1988a) v-myc alters the response of a cloned mouse mammary epithelial cell line to lactogenic hormones. Mol Endocrinol 2:133–142

    Google Scholar 

  • Ball RK, Friis RR, Schoenenberger CA, Groner B (1988b) Prolactin regulation of β-casein gene expression and of a cytosolic 120-kd protein in a cloned mouse mammary epithelial cell line. EMBO J 7:2089–2095

    Google Scholar 

  • Banerjee R, Vonderhaar BK (1992) Prolactin-induced protein kinase-C activity in a mouse mammary cell line (NOG-8). Mol Cell Endocrinol 90:61–67

    Google Scholar 

  • Barber MC, Finley E, Vernon RG (1991) Mechanisms whereby prolactin modulates lipogenesis in sheep mammary gland. Horm Metab Res 23:143–145

    Google Scholar 

  • Barber MC, Clegg RA, Finley E, Vernon RG, Flint DJ (1992a) The role of growth hormone, prolactin and insulin-like growth factors in the regulation of rat mammary gland and adipose tissue metabolism during lactation. J Endocrinol 135:195–202

    Google Scholar 

  • Barber MC, Travers MT, Finley E, Flint DJ, Vernon RG (1992b) Growth-hormone prolactin interactions in the regulation of mammary and adipose-tissue acetyl-coA carboxylase activity and gene expression in lactating rats. Biochem J 285:469–475

    Google Scholar 

  • Barker CS, Bear SE, Keler T, Copeland NG, Gilbert DJ, Jenkins NA, Yeung RS, Tsichlis PN (1992) Activation of the prolactin receptor gene by promoter insertion in a Moloney murine leukemia virus-induced rat thymoma. J Virol 66:6763–6768

    Google Scholar 

  • Bayat-Sarmadi M, Houdebine L-M (1993) Effect of various protein kinase inhibitors on the induction of milk protein gene expression by prolactin. Mol Cell Endocrinol 92:127–134

    Google Scholar 

  • Bazan JF (1989) A novel family of growth factor receptors: a common binding domain in the growth hormone, prolactin, erythropoetin and IL-6 receptors, and the p75 IL-2 receptor β-chain. Biochem Biophys Res Commun 164:788–795

    Google Scholar 

  • Bazan JF (1990) Structural design and molecular evolution of a cytokine receptor superfamily. Proc Natl Acad Sci USA 87:6934–6938

    Google Scholar 

  • Bchini O, Andres AC, Schubaur B, Mehtali M, LeMeur M, Lathe R, Gerlinger P (1991) Precocious mammary gland development and milk protein synthesis in transgenic mice ubiquitously expressing human growth hormone. Endocrinology 128:539–546

    Google Scholar 

  • Bonneterre J, Peyrat JP, Beuscart R, Lefebvre J, Demaille A (1987) Prognostic significance of prolactin receptors in human breast cancer. Cancer Res 47:4724–4728

    Google Scholar 

  • Boutin J-M, Jolicoeur C, Okamura H, Gagnon J, Edery M, Shirota M, Banville D, Dusanterfourt I, Djiane J, Kelly PA (1988) Cloning and expression of the rat prolactin receptor, a member of the growth hormone/prolactin receptor gene family. Cell 53:69–77

    Google Scholar 

  • Boutin J-M, Edery M, Shirota M, Jolicoeur C, Lesueur L, Ali S, Gould D, Dijane J, Kelly PA (1989) Identification of a cDNA encoding a long form of prolactin receptor in human hepatoma and breast cancer cells. Mol Endocrinol 3:1455–1461

    Google Scholar 

  • Brelje TC, Scharp DW, Lacy PE, Orgen L, Talamantes F, Robertson M, Friesen HG, Sorenson RL (1993) Effect of homologous placental lactogens, prolactins, and growth hormones on islet B-cell division and insulin secretion in rat, mouse, and human islets: implication for placental lactogen regulation of islet function during pregnancy. Endocrinology 132:879–887

    Google Scholar 

  • Buck K, Vanek M, Groner B, Ball RK (1992) Multiple forms of prolactin receptor messenger ribonucleic acid are specifically expressed and regulated in murine tissues and the mammary cell line-HC11. Endocrinology 130:1108–1114

    Google Scholar 

  • Buckley AR, Crowe PD, Russel DH (1988) Rapid activation of protein kinase C in isolated rat liver nuclei by prolactin, a known hepatic mitogen. Proc Natl Acad Sci USA 85:8649–8653

    Google Scholar 

  • Cahoreau C, Petridou B, Cerutti M, Djiane J, Devauchelle G (1992) Expression of the full-length rabbit prolactin receptor and its specific domains in baculovirus infected insect cells. Biochimie 74:1053–1065

    Google Scholar 

  • Campbell GS, Christian LJ, Carter-Su C (1993) Evidence for involvement of the growth hormone receptor-associated tyrosine kinase in actions of growth hormone. J Biol Chem 268:7427–7434

    Google Scholar 

  • Campbell PG, Skaar TC, Vega JR, Baumrucker CR (1991) Secretion of insulin-like growth factor-I (IGF-I) and IGF-binding proteins from bovine mammary tissue in vitro. J Endocrinol 128:219–228

    Google Scholar 

  • Chan GC-K, Hess P, Meenakshi T, Carlstedt-Duke J, Gustafsson J-Å, Payvar F (1991) Delayed secondary glucocorticoid response elements: unusual nucleotide motifs specify glucocorticoid receptor binding to transcribed regions of α2u-globulin DNA. J Biol Chem 266:22634–22644

    Google Scholar 

  • Chilton BS, Mani SK, Bullock DW (1988) Servomechanism of prolactin and progesterone in regulating uterine gene expression. Mol Endocrinol 2:1169–1175

    Google Scholar 

  • Chiu S, Koos RD, Wise PM (1992) Detection of prolactin receptor (PRL-R) messenger RNA in the rat hypothalamus and pituitary gland. Endocrinology 130:1747–1749

    Google Scholar 

  • Clapp C, Weiner RI (1992) A specific, high affinity, saturable binding site for the 16-kilodalton fragment of prolactin on capillary endothelial cells. Endocrinology 130:1380–1386

    Google Scholar 

  • Clarke DL, Linzer DIH (1993) Changes in prolactin receptor expression during pregnancy in the mouse ovary. Endocrinology 133:224–232

    Google Scholar 

  • Clevenger CV, Russell DH, Appasay PM, Prystowky MB (1990) Regulation of interleukin 2-driven T-lymphocyte proliferation by prolactin. Proc Natl Acad Sci USA 87:6460–6464

    Google Scholar 

  • Clevenger CV, Altmann SW, Prystowsky MB (1991) Requirement of nuclear prolactin for interleukin-2-stimulated proliferation of T lymphocytes. Science 253:77–79

    Google Scholar 

  • Clevenger CV, Sillman AL, Hanleyhyde J, Prystowsky MB (1992) Requirement for prolactin during cell cycle regulated gene expression in cloned T-lymphocytes. Endocrinology 130:3216–3222

    Google Scholar 

  • Collet C, Joseph R, Nicholas K (1989) Molecular cloning and characterization of a novel marsupial milk protein gene. Biochem Biophys Res Commun 164:1380–1383

    Google Scholar 

  • Collet C, Joseph R, Nicholas K (1991) A marsupial beta-lactoglobulin gene-characterization and prolactin-dependent expression. J Molecular Endocrinol 6:9–16

    Google Scholar 

  • Crumeyrolle-Arias M, Latouche J, Jammes H, Djiane J, Kelly PA, Reymond MJ, Haour F (1993) Prolactin receptors in the rat hypothalamus: autoradiographic localization and characterization. Neuroendocrinology 57:457–466

    Google Scholar 

  • Cunningham BC, Mulkerrin MG, Wells JA (1990) Zinc mediation of the binding of human growth hormone to the human prolactin receptor. Science 250:1709–1712

    Google Scholar 

  • Danielson KG, Oborn CJ, Durban EM, Butel EM, Butel JS, Medina D (1984) Epithelial mouse mammary cell line exhibiting normal morphogenesis in vivo and functional differentiation in vitro. Proc Natl Acad Sci USA 81:3756–3760

    Google Scholar 

  • Dardenne M, Kelly PA, Bach JF, Savino W (1991) Identification and functional activity of prolactin receptors in thymic epithelial cells. Proc Natl Acad Sci USA 88:9700–9704

    Google Scholar 

  • David M, Romero G, Zhang Z-Y, Dixon JE, Larner AC (1993) In vitro activation of the transcription factor ISGF3 by interferon α involves a membrane-associated tyrosine phosphatase and tyrosine kinase. J Biol Chem 268:6593–6599

    Google Scholar 

  • Davis JA, Linzer DIH (1988) Autocrine stimulation of Nb2 cell proliferation by secreted, but not intracellular, prolactin. Mol Endocrinol 2:740–746

    Google Scholar 

  • Davis JA, Linzer DIH (1989a) Expression of muliple forms of the prolactin receptor in mouse liver. Mol Endocrinol 3:674–680

    Google Scholar 

  • Davis JA, Linzer DIH (1989b) A mutant lactogenic hormone binds, but does not activate, the prolactin receptor. Mol Endocrinol 3:949–953

    Google Scholar 

  • Demeyts P (1992) Structure of growth hormone and its receptor — an unexpected stoichiometry. Trends Biochem Sci 17:169–170

    Google Scholar 

  • De Placido S, Gallo C, Perrone F, Marinelli A, Pagliarulo C, Carlomagno C, Petrella G, Distria M, Delrio G, Bianco AR (1990) Prolactin receptor does not correlate with oestrogen and progesterone receptors in primary breast cancer and lacks prognostic significance — 10 year results of the Naples Adjuvant (Gun) Study. Br J Cancer 62:643–646

    Google Scholar 

  • de Toledo, SM, Murphy, LJ, Hatton TH, Friesen HG (1987) Regulation of 70-kilodalton heat-shock-like messenger ribonucleic acid in vitro and in vivo by prolactin. Mol Endocrinol 1:430–434

    Google Scholar 

  • Devinoy E, Maliénou-N'Gassa R, Thépot D, Puissant C, Houdebine LM (1991) Hormone responsive elements within the upstream sequences of the rabbit whey acidic protein (WAP) gene direct chloramphenicol acetyl transferase (CAT) reporter gene expression in transfected rabbit mammary cells. Mol Cell Endocrinol 81:185–193

    Google Scholar 

  • DeVito WJ, Stone S, Avakian C (1991) Prolactin stimulation of protein kinase C activity in the rat hypothalamus. Biochem Biophys Res Commun 176:660–667

    Google Scholar 

  • De Vos AM, Ultsch M, Kossiakoff AA (1992) Human growth hormone and extracellular domain of its receptor: crystal structure of the complex. Science 255:306–312

    Google Scholar 

  • Di Carlo R, Muccioli G, Bellussi G, Conti G, Racca S (1988) High tumour prolactin receptor content and lack of increase in serum prolactin levels as predictors of good response to endocrine therapy in rat mammary cancer. Int J Cancer 41:767–770

    Google Scholar 

  • Di Carlo R, Muccioli G, Papotti M, Bussolati G (1992) Characterization of prolactin receptor in human brain and choroid plexus. Brain Res 570:341–346

    Google Scholar 

  • Di Mattia GE, Gellersen B, Duckworth ML, Friesen HG (1990) Human prolactin gene expression: the use of an alternative non-coding exon in decidua and in the IM9-P3 lymphoblast cell line J Biol Chem 256:16412–16421

    Google Scholar 

  • Dombrowicz D, Sente B, Closset J, Hennen G (1992) Dose-dependent effects of human prolactin on the immature hypophysectomized rat testis. Endocrinology 130:695–700

    Google Scholar 

  • Doppler W, Groner B, Ball RK (1989) Prolactin and glucocorticoid hormones synergistically induce expression of transfected rat β-casein gene promoter constructs in a mammary epithelial cell line. Proc Natl Acad Sci USA 86:104–108

    Google Scholar 

  • Doppler W, Höck W, Hofer P, Groner B, Ball RK (1990) Prolactin and glucocorticoid hormones control transcription of the β-casein gene by kinetically distinct mechanisms. Mol Endocrinol 4:912–919

    Google Scholar 

  • Doppler W, Villunger A, Jennewein P, Brduscha K, Groner B, Ball RK (1991) Lactogenic hormone and cell type-specific control of the whey acidic protein gene promoter in transfected mouse cells. Mol Endocrinol 5:1624–1632

    Google Scholar 

  • Dusanter-Fourt I, Gaye P, Belair L, Petridou B, Kelly PA, Djiane J (1991) Prolactin receptor gene expression in the rabbit — identification, characterization and tissue distribution of several prolactin receptor messenger RNAs encoding a unique precursor. Mol Cell Endocrinol 77:181–192

    Google Scholar 

  • Edery M, Jolicoeur C, Levi-Meyrueis C, Dusanter-Fourt I, Pétridou B, Boutin J-M, Lesueur L, Kelly PA, Dijane J (1989) Identification and sequence analysis of a second form of prolactin receptor by molecular cloning of complementary DNA from rabbit mammary gland. Proc Natl Acad Sci USA

    Google Scholar 

  • Eisenstein RS, Rosen JM (1988) Both cell substratum and hormonal regulation of milk protein gene expression are exerted primarily at the posttranscriptional level. Mol Cell Biol 8:3183–3190

    Google Scholar 

  • Elberg G, Kelly PA, Djiane J, Binder L, Gertler A (1990) Mitogenic and binding properties of monoclonal antibodies to the prolactin receptor in Nb2 rat lymphoma cells: selective enhancement by anti-mouse IgG. J Biol Chem 265:14770–14776

    Google Scholar 

  • Fan GA, Rillema JA (1992) Effect of a tyrosine kinase inhibitor, genistein, on the actions of prolactin in cultured mouse mammary tissues. Mol Cell Endocrinol 83:51–55

    Google Scholar 

  • Fantl WJ, Escobedo JA, Martin GA, Turck CW, del Rosario M, McCormick F, Williams LT (1992) Distinct phosphotyrosines on a growth factor receptor bind to specific molecules that mediate different signaling pathways. Cell 69:413–423

    Google Scholar 

  • Fenton SE, Sheffield LG (1991) Lactogenic hormones increase epidermal growth factor messenger RNA content of mouse mammary glands. Biochem Biophys Res Commun 181:1063–1069

    Google Scholar 

  • Ferrara N, Clapp C, Weiner R (1991) The 16 K fragment of prolactin specifically inhibits basal or fibroblast growth factor stimulated growth of capillary endothelial cells. Endocrinology 129:896–900

    Google Scholar 

  • Fielder PJ, Thordarson G, English A, Rosenfeld RG, Talamantes F (1992) Expression of a lactogen-dependent insulin-like growth factor-binding protein in cultured mouse mammary epithelial cells. Endocrinology 131:261–267

    Google Scholar 

  • Franklin RB, Ekiko DB, Costello LC (1992) Prolactin stimulates transcription of aspartate aminotransferase in prostate cells. Mol Cell Endocrinol 90:27–32

    Google Scholar 

  • Freemark M, Comer M (1989) Purification of a distinct placental lactogen receptor, a new member of the growth hormone/prolactin receptor family. J Clin Invest 83:883–889

    Google Scholar 

  • Fuh G, Colosi P, Wood WI, Wells JA (1993) Mechanism-based design of prolactin receptor antagonists. J Biol Chem 268:5376–5381

    Google Scholar 

  • Furth PA, Shamay A, Wall RJ, Henninghausen L (1992) Gene transfer into somatic tissues by jet injection. Anal Biochem 205:365–368

    Google Scholar 

  • Gaddykurten D, Richards JS (1991) Regulation of α2-macroglobulin by luteinizing hormone and prolactin during cell differentiation in the rat ovary. Mol Endocrinol 5:1280–1291

    Google Scholar 

  • Gåfvels M, Bjurulf E, Selstam G (1992) Prolactin stimulates the expression of luteinizing hormone/chorionic gonadotropin receptor messenger ribonucleic acid in the rat corpus luteum and rescues early pregnancy from bromocriptin-induced abortion. Biol Reprod 47:534–540

    Google Scholar 

  • Gala RR (1991) Prolactin and growth hormone in the regulation of the immune system. Proc Soc Exp Biol Med 198:513–527

    Google Scholar 

  • Gellerson B, Bonhoff A, Hunt N, Bohnet HG (1991) Decidual-type prolactin expression by the human myometrium. Endocrinology 129:158–168

    Google Scholar 

  • Gertler A, Walker A, Friesen HG (1985) Enhancement of human growth hormone-stimulated mitogenesis of Nb2 node lymphoma cells: the role of protein kinase C and calcium mobilization. Immunopharmacology 12:37–51

    Google Scholar 

  • Gertler A, Petridou B, Kriwi GG, Djiane J (1993) Interaction of lactogenic hormones with purified recombinant extracellular domain of rabbit prolactin receptor expressed in insect cells. FEBS Lett 319:277–281

    Google Scholar 

  • Goodman HS, Rosen JM (1990) Transcriptional analysis of the mouse beta-casein gene. Mol Endocrinol 4:1661–1670

    Google Scholar 

  • Grunicke HH, Maly K (1993) Role of GTPases and GTPase regulatory proteins in oncogenesis (1993) Crit Rev Oncogen 4:389–402

    Google Scholar 

  • Gu Y, Jayatilak PG, Parmer TG, Gauldie J, Fey GH, Gibori G (1992) α2-Macroglobulin expression in the mesometrial decidua and its regulation by decidual luteotropin and prolactin. Endocrinology 131:1321–1328

    Google Scholar 

  • Happ B, Hynes NE, Groner B (1993) Ha-ras and v-raf oncogenes, but not int-2 and c-myc, interfere with the lactogenic hormone dependent activation of the mammary gland specific transcription factor. Cell Growth & Differ 4:9–15

    Google Scholar 

  • Haraguchi S, Good RA, Engelman RW, Day NK (1992) Human prolactin regulates transfected MMTV LTR-directed gene expression in a human breast-carcinoma cell line through synergistic interaction with steroid hormones. Int J Cancer 52:928–933

    Google Scholar 

  • Harris S, McClenaghan M, Simons JP, Ali S, Clark AJ (1990) Gene expression in the mammary gland. J Reprod Fert 88:707–715

    Google Scholar 

  • Härtig E, Nebl G, Mink S, Doppler W, Cato ACB (1993) Steroid hormone and mammary cell type-specific regulation of expression of mouse mammary tumor virus. Life Science Advances-Molecular Biology

    Google Scholar 

  • Hayes TE, Kitchen AM, Cochran BH (1987) Inducible binding of a factor to the c-fos regulatory region. Proc Natl Acad Sci USA 84:1272–1276

    Google Scholar 

  • Hennighausen L (1990) The mammary gland as a bioreactor: production of foreign proteins in milk. Protein Expression and Purification 1:3–8

    Google Scholar 

  • Hennighausen L, Westphal C, Sankaran L, Pittius CW (1991) Regulation of expression of genes for milk proteins. In: First N, Haseltine FP (eds) Transgenic animals. Butterworth-Heinemann, Reed, New York.

    Google Scholar 

  • Hiroka Y, Tatsumi K, Shiozawa M, Aiso S, Fukazawa T, Yasuda K, Miyia K (1991) A placental specific 5 non-coding exon of human prolactin. Mol Cell Endocrinol 75:71–80

    Google Scholar 

  • Hitti YS, Horseman ND (1991) Structure of the gene encoding columbid annexin Icp35. Gene 103:185–192

    Google Scholar 

  • Holtkamp W, Wuttke W, Nagel GA, Blossey HC (1988) Vergleichende Untersuchungen zum Prolaktin-, Östrogen-, Gestagen-und Androgenrezeptorgehalt menschlicher Mammakarzinome. Onkologie 11:71–76

    Google Scholar 

  • Horlick KR, Ganjianpour M, Frost SC, Nick HS (1991) Annexin-I regulation in response to suckling and rat mammary cell differentiation. Endocrinology 128:1574–1579

    Google Scholar 

  • Hu Z-Z, Dufau, ML (1991) Multiple and differential regulation of ovarian prolactin receptor messenger RNAs and their expression. Biochem Biophys Res Commun 181:219–225

    Google Scholar 

  • Hynes NE, Taverna D, Harwerth IM, Ciardiello F, Salomon DS, Yamamoto T, Groner B (1990) Epidermal growth factor receptor, but not c-erbB-2, activation prevents lactogenic hormone induction of the β-casein gene in mouse mammary epithelial cells. Mol Cell Biol. 10:4027–4034

    Google Scholar 

  • Jagoda CA, Rillema JA (1991) Temporal effect of prolactin on the activities of lactose synthetase, α-lactalbumin, and galactosyl transferase in mouse mammary gland explants. Proc Soc Exp Biol Med 197:431–434

    Google Scholar 

  • Jahn GA, Dijane J, Houdebine L-M (1989) Inhibition of casein synthesis by progestagens in vitro: modulation in relation to concentration of hormones that synergize with prolactin. J Steroid Biochem 32:373–379

    Google Scholar 

  • Jahn GA, Edery M, Belair L, Kelly PA, Djiane J (1991) Prolactin receptor gene expression in rat mammary gland and liver during pregnancy and lactation. Endocrinology 128:2976–2984

    Google Scholar 

  • Jehn B, Costello E, Marti A, Keon N, Deane R, Li F, Friis RR, Burri PH, Martin F, Jaggi R (1992) Overexpression of Mos, Ras, Src, and Fos inhibits mouse mammary epithelial cell differentiation. Mol Cell Biol 12:3890–3902

    Google Scholar 

  • Jennewein P (1992) Funktionelle Analyse des WAP Gen Promotors. Diplomarbeit, Universität Innsbruck

    Google Scholar 

  • Jolicoeur C, Boutin J-M, Okamura H, Raguet S, Djiane J, Kelly PA (1989) Multiple regulation of prolactin receptor gene expression in rat liver. Mol Endocrinol 3:895–900

    Google Scholar 

  • Kanai A, Nonomura N, Yoshimura M, Oka T (1993) DNA-binding proteins and their cis-acting sites controlling hormonal induction of a mouse β-casein-CAT fusion protein in mammary epithelial cells. Gene 26:195–201

    Google Scholar 

  • Kelly PA, Djiane J, Postel-Vinay MC, Edery M (1991) The prolactin/growth hormone receptor family. Endocrine Rev 12:235–251

    Google Scholar 

  • Khan KD, Shuai K, Lindwall G, Maher SE, Darnell JE Jr, Bothwell ALM (1993) Induction of the Ly-6A/E gene by interferon α/β and γ requires a DNA element to which a tyrosine-phosphorylated 91-kDa protein binds. Proc Natl Acad Sci USA 90:6806–6810

    Google Scholar 

  • Kleinberg DL (1987) Prolactin and breast cancer. N Engl J Med 316:269–271

    Google Scholar 

  • Kleis-SanFrancisco S, Hewetson A, Chilton BS (1993) Prolactin augments progesterone-dependent uteroglobin gene expression by modulating promoter-binding proteins. Mol Endocrinol 7:214–223

    Google Scholar 

  • Köbberling J (1983) Akromegalie — pathophysiologische und therapeutische Grundlagen. In: Bromocriptin. Ein fachübergreifendes Therapieprinzip. Schattauer, Stuttgart, pp 135–148

    Google Scholar 

  • Koh CY, Phillips JT (1993) Prolactin receptor expression by lymphoid tissues in normal and immunized rats. Mol Cell Endocrinol 92:R21–R25

    Google Scholar 

  • Kurtz A, Bristol LA, Tóth BE, Lazar-Wesley E, Takács L, Kacsóh B (1993) Mammary epithelial cells of lactating rats express prolactin messenger ribonucleic acid. Biol Reprod 48:1095–1103

    Google Scholar 

  • Larner AC, David M, Feldman GM, Igarashi K-i, Hackett RH, Webb DSA, Sweitzer SM, Petricoin EF III, Finbloom DS (1993) Tyrosine phosphorylation of DNA binding proteins by mulitple cytokines. Science 261:1730–1733

    Google Scholar 

  • Lechleiter JD, Clapham DE (1992) Molecular mechanisms of intracellular calcium excitability in X. laevis oocytes. Cell 69:283–294

    Google Scholar 

  • Lee CS, Oka T (1992a) Progesterone regulation of a pregnancy-specific transcription repressor to β-casein gene promoter in mouse mammary gland. Endocrinology 131:2257–2262

    Google Scholar 

  • Lee CS, Oka T (1992b) A pregnancy-specific mammary nuclear factor involved in the repression of the mouse β-casein gene transcription by progesterone. J Biol Chem 267:5797–5801

    Google Scholar 

  • Legraverend C, Mode A, Westin S, Ström A, Eguchi H, Zaphiropoulos PG, Gustafsson J-Å (1992) Transcriptional regulation of rat P-450 2C gene subfamily members by the sexually dimorphic pattern of growth hormone secretion. Mol Endocrinol 6:259–266

    Google Scholar 

  • Leontic EA, Tyson JE (1977) Prolactin and fetal osmoregulation: water transport across isolated human amnion. Am J Physiol 232:R124–R127

    Google Scholar 

  • Lesueur L, Edery M, Paly J, Kelly P, Djiane J (1990) Prolactin stimulates milk protein promoter in CHO cells cotransfected with prolactin receptor cDNA. Mol Cell Endocrinol 71:R7–R12

    Google Scholar 

  • Lesueur L, Edery M, Ali S, Paly J, Kelly PA, Djiane J (1991) Comparison of long and short forms of the prolactin receptor on prolactin-induced milk protein gene transcription. Proc Natl Acad Sci USA 88:824–828

    Google Scholar 

  • Leung DW, Spencer SA, Cachianes G, Hammonds G, Collins C, Henzel WJ, Barnard R, Waters MJ, Wood WI (1987) Growth hormone receptor and serum binding protein: purification, cloning and expression. Nature 330:537–543

    Google Scholar 

  • Luck DN, Gout PW, Sutherland ER, Fox K, Huyer M, Smith M (1992) Analysis of disulphide bridge function in recombinant bovine prolactin using site-specific mutagenesis and renaturation under mild alkaline conditions — a crucial role for the central disulphide bridge in the mitogenic activity of the hormone. Protein Eng 5:559–567

    Google Scholar 

  • Maddox PR, Jones DL, Mansel JRE (1992) Prolactin and total lactogenic hormone measured by microbioassay and immunoassay in breast cancer. Br J Cancer 65:456–460

    Google Scholar 

  • Markoff E, Sigel MB, Lacour N, Seavey BK, Friesen HG, Lewis UJ (1988) Glycosylation selectively alters the biological activity of prolactin. Endocrinology 123:1303–1306

    Google Scholar 

  • McKnight RA, Shamay A, Sankaran L, Wall RJ, Hennighausen L (1992) Matrix-attachment regions can impart position-independent regulation of a tissue-specific gene in transgenic mice. Proc Natl Acad Sci USA 89:6943–6947

    Google Scholar 

  • Meyer N, Prentice DA, Fox MT, Hughes JP (1992) Prolactin-induced proliferation of the Nb2 T-lymphoma is associated with protein kinase-C-independent phosphorylation of strathmin. Endocrinology 131:1977–1984

    Google Scholar 

  • Mieth M, Boehmer FD, Ball R, Groner B, Grosse R (1990) Transforming growth factor-β inhibits lactogenic hormone induction of β-casein expression in HC11 mouse mammary epithelial cells. Growth Factors 4:9–15

    Google Scholar 

  • Mink S, Hartig E, Jennewein P, Doppler W, Cato ACB (1992) A mammary cell-specific enhancer in mouse mammary tumor virus DNA is composed of multiple regulatory elements including binding sites for CTF/NFI and a novel transcription factor, mammary cell-activating factor. Mol Cell Biol 12:4906–4918

    Google Scholar 

  • Mode A, Wiersma-Larsson E, Ström A, Zaphiropoulos PG, Gustafsson, J-Å (1989) A dual role for growth hormone as a feminizing and masculinizing factor in control of sex-specific cytochrom P450 isozymes in rat liver. J Endocrinol 120:311–317

    Google Scholar 

  • Mok E, Golovkina TV, Ross SR (1992) A mouse mammary tumor virus mammary gland enhancer confers tissue-specific but not lactation-dependent expression in transgenic mice. J Virol 66:7529–7532

    Google Scholar 

  • Murphy LC, Tsuyuki D, Myal Y, Shiu RPC (1987) Isolation and sequencing of a cDNA clone for a prolactin-inducible protein (PIP): regulation of PIP gene expression in the human breast cancer cell line: T-47D. J Biol Chem 262:15236–15241

    Google Scholar 

  • Murphy LC, Murphy LJ, Tsuyuki D, Duckworth ML, Shiu RPC (1988a) Cloning and characterization of a cDNA encoding a highly conserved, putative calcium binding protein, identified by an anti-prolactin receptor antiserum. J Biol Chem 263:2397–2401

    Google Scholar 

  • Murphy PR, DiMattia GE, Friesen HG (1988b) Role of calcium in prolactin-stimulated c-myc gene expression and mitogenesis in Nb2 lymphoma cells. Endocrinology 122:2476–2485

    Google Scholar 

  • Myal Y, Robinson DB, Iwasiow B, Tsuyuki D, Wong P, Shiu RPC (1991) The prolactin-inducible protein (PIP/GCDFP-15) gene — cloning, structure and regulation. Mol Cell Endocrinol 80:165–175

    Google Scholar 

  • Nagano M, Kelly PA (1992) Absence of a putative ATP/GTP binding site in the rat prolactin receptor. Biochem Biophys Res Commun 183:610–618

    Google Scholar 

  • Nicoll CS (1974) Physiological actions of prolactin. In: Knobil E, Saywer WH (eds) Handbook of physiology, American Physiological Society, Washington, DC, Section 7, Vol 4, Part 2, pp253–292

    Google Scholar 

  • Nicoll CS, Herbert NJ, Russell SM (1985) Lactogenic hormones stimulate the liver to secrete a factor that acts synergistically with prolactin to promote growth of the pigeon crop-sac mucosal epithelium in vivo. Endocrinology 116:1449–1453

    Google Scholar 

  • Nishizuka Y (1992) Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 258:607–614

    Google Scholar 

  • O'Neal KD, Schwarz LA, Yu-Lee L-y (1991) Prolactin receptor gene expression in lymphoid cells. Mol Cell Endocrinol 82:127–135

    Google Scholar 

  • O'Neal KD, Montgomery DW, Truong TM, Yu-Lee L-y (1992) Prolactin gene expression in human thymocytes. Mol Cell Endocrinol 87:R19–R23

    Google Scholar 

  • Ono M, Oka T (1980) The differential actions of cortisol on the accumulation of α-lactalbumin and casein in midpregnant mouse mammary gland in culture. Cell 19:473–480

    Google Scholar 

  • Ormandy CJ, Sutherland RL (1993) Mechanisms of prolactin receptor regulation in mammary gland. Mol Cell Endocrinol 91:C1–C6

    Google Scholar 

  • Ormandy CJ, Clarke CL, Kelly PA, Sutherland RL (1992) Androgen regulation of prolactin-receptor gene expression in MCF-7 and MDA-MB-453 human breast cancer cells. Int J Cancer 50:777–782

    Google Scholar 

  • Ormandy CJ, Lee CSL, Kelly PA, Sutherland RL (1993) Regulation of prolactin receptor expression by the tumour promoting phorbol ester 12-O-tetradecanoylphorbol-13-acetate in human breast cancer cells. J Cell Biochem 52:47–56

    Google Scholar 

  • Parry G, Stubbs J, Bissell MJ, Schmidhauser C, Spicer AP, Gendler SJ (1992) Studies of Muc-1 mucin expression and polarity in the mouse mammary gland demonstrate developmental regulation of Muc-1 glycosylation and establish the hormonal basis for mRNA expression. J Cell Science 101:191–199

    Google Scholar 

  • Pearse RN, Feinman R, Shuai K, Darnell JE Jr, Ravetch JV (1993) Interferon γ-induced transcription of the high-affinity Fc receptor for IgG Requires assembly of a complex that includes the 91-kDa subunit of transcription factor ISGF3. Proc Natl Acad Sci USA 90:4314–4318

    Google Scholar 

  • Pellegrini I, Lebrun JJ, Ali S, Kelly PA (1992) Expression of prolactin and its receptor in human lymphoid cells. Mol Endocrinol 6:1023–1031

    Google Scholar 

  • Pérez-Villamil B, Bordiú E, Puente-Cueva M (1992) Involvement of physiological prolactin levels in growth and prolactin receptor content of prostate glands and testes in developing male rats. J Endocrinol 132:449–459

    Google Scholar 

  • Peters BJ, Rillema JA (1992) Effect of prolactin on 2-deoxyglucose uptake in mouse mammary gland explants. Am J Physiol 262:E627–E630

    Google Scholar 

  • Pierre S, Jolivet G, Devinoy E, Théron MC, Maliénou-N'Gassa R, Puissant C, Houdebine LM (1992) A distal region enhances the prolactin induced promoter activity of the rabbit αsl-casein gene. Mol Cell Endocrinol 87:147–156

    Google Scholar 

  • Pittius CW, Sankaran L, Topper YJ, Hennighausen L (1988) Comparision of the regulation of the whey acidic protein gene with that of a hybrid gene containing the whey acidic protein gene promoter in transgenic mice. Mol Endocrinol 2:1027–1032

    Google Scholar 

  • Posner BI, Kelly PA, Friesen HG (1974) Induction of a lactogenic receptor in rat liver: influence of estrogen and the pituitary. Proc Natl Acad Sci USA 71:2407–2410

    Google Scholar 

  • Postel-Vinay MC, Belair L, Kayser C, Kelly PA, Djiane J (1991) Identification of prolactin and growth hormone binding proteins in rabbit milk. Proc Natl Acad Sci USA 88:6687–6690

    Google Scholar 

  • Prins GS (1987) Prolactin influence on cytosol an nuclear androgen receptors in the ventral, dorsal, and lateral lobes of the rat prostate. Endocrinology 120:1457–1464

    Google Scholar 

  • Prosser CG, Sankaran L, Hennighausen L, Topper YJ (1987) Comparison of the roles of insulin and insulin-like growth factor i in casein gene expression and in the development of α-lactalbumin and glucose transport activities in the mouse mammary epithelial cell. Endocrinology 120:1411–1416

    Google Scholar 

  • Puissant C, Houdebine LM (1991) Cortisol induces rapid accumulation of whey acid protein messenger RNA but not of αS1 and β-casein mRNA in rabbit mammary explants. Cell Biol Int Rep 15:121–129

    Google Scholar 

  • Randall GW, Daniel JC, Chilton BS (1991) Prolactin enhances uteroglobin gene expression by uteri of immature rabbits. J Reprod Fertil 91:249–257

    Google Scholar 

  • Ray DB, Jansen RW, Horst IA, Mills NC, Kowal J (1986) A complex noncoordinate regulation of α-lactalbumin and 25k β-casein by corticosterone, prolactin, and insulin in long term cultures of normal rat mammary cells. Endocrinology 118:393–407

    Google Scholar 

  • Reichmann E, Ball RK, Groner B, Friis RR (1989) New mammary epithelial and fibroblastic cell clones in coculture form structures competent to differentiate functionally. J Cell Biol 108:1127–1138

    Google Scholar 

  • Rillema JA, Etindi RN, Ofenstein JP, Waters SB (1988) Mechanisms of prolactin action. In: Knobil E, Neill J (eds) The physiology of reproduction. Raven, New York, pp2217–2234

    Google Scholar 

  • Rillema JA, Tarrant TM, Linebaugh BE (1989) Studies on the mechanism by which prolactin regulates protein, RNA, and DNA synthesis in NB2 node lymphoma cells. Biochim Biophys Acta 1014:78–82

    Google Scholar 

  • Rillema JA, Campbell GS, Lawson DM, Carter-Su C (1992) Evidence for a rapid stimulation of tyrosine kinase activity by prolactin in Nb2 rat lymphoma cells. Endocrinology 131:973–975

    Google Scholar 

  • Robinson SD, Roberts AB, Daniel CW (1993) TGF β suppresses casein synthesis in mouse mammary explants and may play a role in controlling milk levels during pregnancy. J Cell Biol 120:245–251

    Google Scholar 

  • Rosen, JM, Rodgers JR, Couch CH, Bisbee CA, David-Inouye Y, Campbell SM, Yu-Lee K-Y (1986) Multihormonal regulation of milk protein gene expression. Ann NY Acad Sci 478:63–76

    Google Scholar 

  • Rozakis-Adcock M, Kelly PA (1991) Mutational analysis of the ligand-binding domain of the prolactin receptor. J Biol Chem 266:16472–16477

    Google Scholar 

  • Ruff-Jamison, Chen K, Cohen S (1993) Induction by EGF and interferon-γ of tyrosine phosphorylated DNA binding proteins in mouse liver nuclei. Science 261: 1733–1736

    Google Scholar 

  • Rui H, Djeu JY, Evans GA, Kelly PA, Farrar WL (1992) Prolactin receptor triggering — evidence for rapid tyrosine kinase activation. J Biol Chem 267:24076–24081

    Google Scholar 

  • Sadowski HB, Shuai K, Darnell JE Jr, Gilman MZ (1993) A common nuclear signal transduction pathway activated by growth factor and cytokine receptors. Science 261:1739–1744

    Google Scholar 

  • Sakai S, Yamamoto K, Aihara M, Suzuki M, Nagasawa H (1990) Prolactin and progesterone receptors in pregnancy-dependent mammary tumors in GR/A mice. Proc Soc Exp Biol Med 195:375–378

    Google Scholar 

  • Sankaran L, Topper YL (1988) Progesterone and prolactin are both required for suppression of the induction of rat α-lactalbumin activity. Biochem Biophys Res Commun 155:1038–1045

    Google Scholar 

  • Scammell JG, Luck DN, Valentine DL, Smith M (1992) Epitope mapping of monoclonal antibodies to bovine prolactin. Am J Physiol 263:E520–E525

    Google Scholar 

  • Schindler C, Shuai K, Prezioso VR, Darnell JE Jr (1992) Interferon-dependent tyrosine phosphorylation of a latent cytoplasmic transcription factor. Science 257:809–813

    Google Scholar 

  • Schmidhauser C, Bissell MJ, Myers CA, Casperson GF (1990) Extracellular matrix and hormones transcriptionally regulate bovine β-casein 5' sequences in stably transfected mouse mammary cells. Proc Natl Acad Sci USA 87:9118–9122

    Google Scholar 

  • Schmidhauser C, Casperson GF, Myers CA, Sanzo KT, Bolten S, Bissell MJ (1992) A novel transcriptional enhancer is involved in the prolactin and extracellular matrix-dependent regulation of β-casein gene expression. Mol Biol Cell 3:699–709

    Google Scholar 

  • Schmitt-Ney M, Doppler W, Ball RK, Groner B (1991) β-Casein gene promoter activity is regulated by the hormone-mediated relief of transcriptional repression and a mammary-gland-specific nuclear factor. Mol Cell Biol 11:3745–3755

    Google Scholar 

  • Schmitt-Ney M, Happ B, Ball RK, Groner B (1992a) Developmental and environmental regulation of a mammary gland-specific nuclear factor essential for transcription of the gene encoding β-casein. Proc Natl Acad Sci USA 89:3130–3134

    Google Scholar 

  • Schmitt-Ney M, Happ B, Hofer P, Hynes NE, Groner B (1992b) Mammary gland-specific nuclear factor activity is positively regulated by lactogenic hormones and negatively by milk stasis. Mol Endocrinol 6:1988–1997

    Google Scholar 

  • Schoenenberger C-A, Zuk A, Groner B, Jones W, Andres A-C (1990) Induction of the endogenous whey acidic protein (Wap) Gene and a Wap-myc hybrid gene in primary murine mammary organoids. Development Biol 139:327–337

    Google Scholar 

  • Schwarz LA, Stevens AM, Hrachovy JA, Yu-Lee L-y (1992) Interferon regulatory factor-1 is inducible by prolactin, interleukin-2 and concanavalin A in T cells. Mol Cell Endocrinol 86:103–110

    Google Scholar 

  • Scott P, Kessler MA, Schuler LA (1992) Molecular cloning of the bovine prolactin receptor and distribution of prolactin and growth hormone receptor transcripts in fetal and uteroplacental tissues. Mol Cell Endocrinol 89:47–58

    Google Scholar 

  • Shirota M, Banville D, Ali S, Jolicoeur C, Boutin J-M, Edery M, Dijane J, Kelly PA (1990) Expression of two forms of prolactin receptor in rat ovary and liver. Mol Endocrinol 4:1136–1143

    Google Scholar 

  • Shiu RPC (1979) Prolactin receptors in human breast cancer cells in long-term tissue culture. Cancer Res 39:4381–4386

    Google Scholar 

  • Shiu RPC, Iwasiow BM (1985) Prolactin-inducible proteins in human breast cancer cells. J Biol Chem 260:11307–11313

    Google Scholar 

  • Shuai K, Stark GR, Kerr IM, Darnell JE Jr (1993) A single phosphotyrosine residue of Stat91 required for gene activation by interferon-γ. Science 261:1744–1746

    Google Scholar 

  • Silvennoinen O, Schnidler C, Schlessinger J, Levy DE (1993) Ras-independent growth factor signaling by transcription factor tyrosine phosphorylation. Science 261:1736–1739

    Google Scholar 

  • Sinha YN, Depaolo LV, Haro LS, Singh RNP, Jacobsen BP, Scott KE, Lewis UJ (1991) Isolation and biochemical properties of four forms of glycosylated porcine prolactin. Mol Cell Endocrinol 80:203–213

    Google Scholar 

  • Skwarlo-Sonta K (1992) Prolactin as an immunoregulatory hormone in mammals and birds. Immunol Lett 33:105–122

    Google Scholar 

  • Soares MJ, Faria TN, Roby KF, Deb S (1991) Pregnancy and the prolactin family of hormones: coordination of anterior pituitary, uterine, and placental expression. Endocrine Rev 12:402–423

    Google Scholar 

  • Stahl N, Yancopoulos GD (1993) The alphas, betas and kinases of cytokine receptor complexes. Cell 74:587–590

    Google Scholar 

  • Staindl B, Berger P, Kofler R, Wick G (1987) Monoclonal antibodies against human, bovine and rat prolactin: epitope mapping of human prolactin and development of a two-site immunoradiometric assay. J Endocrinol 114:311–318

    Google Scholar 

  • Steinmetz RW, Grant AL, Malven PV (1993) Transcription of prolactin gene in milk secretory cells of the rat mammary gland. J Endocrinol 136:271–271

    Google Scholar 

  • Stevens AM, Yu-Lee L-y (1992) The transcription factor interferon regulatory factor-1 is expressed during both early G1 and the G1/S transition in the prolactin-induced lymphocyte cell cycle. Mol Endocrinol 6:2236–2243

    Google Scholar 

  • Strange R, Li F, Friis RR, Reichmann E, Haenni B, Burri PH (1991) Mammary epithelial differentiation in vitro — minimum requirements for a functional response to hormonal stimulation. Cell Growth Differ 2:549–559

    Google Scholar 

  • Stricker, P, Grueter, R (1928) Action du lobe anterieur de lhypophse sur la montée laiteuse. Compt Rend Soc Biol 99:1978–1980

    Google Scholar 

  • Taketani Y, Oka T (1983) Tumor promoter 12-o-tetradecanoylphorbol 13-acetate, like epidermal growth factor, stimulates cell proliferation and inhibits differentiation of mouse mammary epithelial cells in culture. Proc Natl Acad Sci USA 80:1646–1649

    Google Scholar 

  • Tata JR, Kawahara A, Baker BS (1991) Prolactin inhibits both thyroid hormone-induced morphogenesis and cell death in cultured amphibian larval tissues. Dev Biol 146:72–80

    Google Scholar 

  • Taverna D, Groner B, Hynes NE (1991) Epidermal growth factor receptor, platelet-derived growth factor receptor, and c-erbB-2 receptor activation all promote growth but have distinctive effects upon mouse mammary epithelial cell differentiation. Cell Growth Differ 2:145–154

    Google Scholar 

  • Thordarson G, Fielder P, Chul L, Yun KH, Robleto D, Orgen L, Talamantes F (1992) Mammary gland differentiation in hypophysectomized, pregnant mice treated with corticosterone and thyroxine. Biol Reprod 47:676–682

    Google Scholar 

  • Thoreau E, Petridou B, Kelly PA, Djiane J, Mornon JP (1991) Structural symmetry of the extracellular domain of the cytokine/growth hormone/prolactin receptor family and interferon receptors revealed by hydrophobic cluster analysis. FEBS Lett 282:26–31

    Google Scholar 

  • Tiong TS, Herington AC (1992) Ontogeny of messenger RNA for the rat growth hormone receptor and serum binding protein. Mol Cell Endocrinol 83:133–141

    Google Scholar 

  • Too CKL, Shiu RPC, Friesen HG (1990) Cross-linking of G-proteins to the prolactin receptor in rat Nb2 lymphoma cells. Biochem Biophys Res Commun 173:48–52

    Google Scholar 

  • Topper YJ, Freeman CS (1980) Multiple hormone interactions in the developmental biology of the mammary gland. Physiol Rev 60:1049–1106

    Google Scholar 

  • Turner MD, Rennison ME, Handel SE, Wilde CJ, Burgoyne RD (1992) Proteins are secreted by both constitutive and regulated secretory pathways in lactating mouse mammary epithelial cells. Endocrinology 117:269–278

    Google Scholar 

  • Ullrich A, Schlessinger J (1990) Signal transduction by receptors with tyrosine kinase activity. Cell 61:203–212

    Google Scholar 

  • Ultsch M, Devos AM, Kossiakoff AA (1991) Crystals of the complex between human growth hormone and the extracellular domain of its receptor. J Mol Biol 222:865–868

    Google Scholar 

  • Villalba M, Zabala MT, Martinez-Serrano A, de la Colina R, Satrústegui J, Garcia-Ruiz JP (1991) Prolatin increases cytosolic free calcium concentration in hepatocytes of lactating rats. Endocrinology 129:2857–2861

    Google Scholar 

  • Vizoso F, Sanchez LM, Diezitza I, Lamelas ML, Lopezotin C (1992) Factors affecting protein composition of breast secretions from nonlactating women. Breast Cancer Res Treat 23:251–258

    Google Scholar 

  • Vonderhaar BK, Biswas R (1987) Prolactin effects and regulation of its receptors in human mammary tumor cells. In: Medina D, Kidwell W, Heppner G, Anderson E (eds) Cellular and molecular biology of mammary cancer. Plenum Press, New York, pp 205–219

    Google Scholar 

  • Voss JW, Rosenfeld MG (1992) Anterior pituitary development: short tales form dwarf mice. Cell 70:527–530

    Google Scholar 

  • Wakao H, Schmitt-Ney M, Groner B (1992) Mammary gland-specific nuclear factor is present in lactating rodent and bovine mammary tissue and composed of a single polypeptide of 89 kDa. J Biol Chem 267:16365–16370

    Google Scholar 

  • Waters SB, Rillema JA (1989) Role of protein kinase C in the prolactin-induced responses in mouse mammary gland explants. Mol Cell Endocrinol 63:159–166

    Google Scholar 

  • Wegenka UM, Buschmann J, Lütticken C, Heinrich PC, Horn F (1993) Acute-phase response factor, a nuclear factor binding to acute-phase response elements, is rapidly activated by interleukin-6 at the posttranslational level. Mol Cell Biol 13:276–288

    Google Scholar 

  • Welte T, Philipp S, Cairns C, Gustafsson J-Å, Doppler W (1993) Glucocorticoid receptor binding sites in the promoter region of milk protein genes. J Steroid Biochem (in press).

    Google Scholar 

  • Wilks AF, Harpur AG, Kurban RR, Ralph SJ, Zürcher G, Ziemiecki A (1991) Two novel protein-tyrosine kinases, each with a second phosphotransferase-related catalytic domain, define a new class of protein kinase. Mol Cell Biol 11:2057–2065

    Google Scholar 

  • Wilson KC, Finbloom DS (1992) Interferon γ rapidly induces in human monocytes a DNA-binding factor that recognizes the gamma response region within the promoter of the gene for the high-affinity Fc γ receptor. Proc Natl Acad Sci USA 89:11964–11968

    Google Scholar 

  • Wolff J, Wong C, Cheng H, Poyet P, Butel JS, Rosen JR (1992) Differential effects of the simian virus 40 early genes on mammary epithelial cell growth, morphology, and gene expression. Exp Cell Res 202:67–76

    Google Scholar 

  • Xu Y-H, Horseman ND (1992) Nuclear proteins and prolactin-induced Annexin Icp35 gene transcription. Mol Endocrinol 6:375–383

    Google Scholar 

  • Yoon J-B, Berry SA, Seelig S, Towle HC (1990) An inducible nuclear factor binds to a growth hormone-regulated gene. J Biol Chem 265:19947–19954

    Google Scholar 

  • Yoshimura M, Oka T (1990a) Transfection of β-casein chimeric gene and hormonal induction of its expression in primary murine mammary epithelial cells. Proc Natl Acad Sci USA 87:3670–3674

    Google Scholar 

  • Yoshimura M, Oka T (1990b) Hormonal induction of β-casein gene expression: requirement of ongoing protein synthesis for transcription. Endocrinology 126:427–433

    Google Scholar 

  • Yu-Lee L-y (1990) Prolactin stimulates transcription of growth related genes in Nb2 T lymphoma cells. Mol Cell Endocrinol 68:21–28

    Google Scholar 

  • Yu-Lee L-y, Hrachovy JA, Stevens AM, Schwarz LA (1990) Interferon regulatory factor-1 is an immediate-early gene under transcriptional regulation by prolactin in Nb2 T cells. Mol Cell Biol 10:3087–3094

    Google Scholar 

  • Zabala MT, Garcia-Ruiz JP (1989) Regulation of expression of the messenger ribonucleic acid encoding the cytosolic form of phosphoenolpyruvate carboxykinase in liver and small intestine of lactating rats. Endocrinology 125:2587–2593

    Google Scholar 

  • Zeigler ME, Wicha MS (1992) Posttranscriptional regulation of α-casein mRNA accumulation by laminin. Exp Cell Res 200:481–489

    Google Scholar 

  • Zhang R, Buczko E, Tsai-Morris C-H, Hu Z-Z, Dufau M (1990) Isolation and characterization of two novel rat ovarian lactogen receptor cDNA species. Biochem Biophys Res Commun 168:415–422

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag

About this chapter

Cite this chapter

Doppler, W. (1994). Regulation of gene expression by prolactin. In: Reviews of Physiology, Biochemistry and Pharmacology, Volume 124. Reviews of Physiology, Biochemistry and Pharmacology, vol 124. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0031032

Download citation

  • DOI: https://doi.org/10.1007/BFb0031032

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57587-0

  • Online ISBN: 978-3-540-48280-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics