Skip to main content

Mucosal innervation and control of water and ion transport in the intestine

  • Chapter
  • First Online:
Book cover Reviews of Physiology, Biochemistry and Pharmacology, Volume 109

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 109))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

A:

adrenaline

ACh:

acetylcholine

ATP:

adenosine 5′-triphosphate

cAMP:

adenosine 3′,5′-cyclic monophosphate

CCK:

cholecystokinin

CGRP:

calcitonin gene-related peptide

ChAT:

choline acetyltransferase

CT:

cholera toxin

DMPP:

1,1-dimethyl-4-phenylpipe-razinium

DYN:

dynorphin

EFS:

electrical field stimulation

ENK:

enkephalin

ESP:

excitatory synaptic potential

G:

transmembrane conductance

GRP:

gastrin-releasing peptide

5-HT:

5-hydroxytryptamine (serotonin)

IR:

immunoreactive/immunoreactivity

ISC :

short-circuit current

ISP:

inhibitory synaptic potential

NA:

noradrenaline

NPY:

neuropeptide Y

6-OHDA:

6-hydroxydopamine

PD:

potential difference

PG:

prostaglandin

PHI:

peptide histidine isoleucine

PP:

pancreatic polypeptide

PYY:

peptide YY

QNB:

quinuclidinyl benzilate

SOM:

somatostatin

SP:

substance P

ST:

Escherichia coli heat-stable enterotoxin

TTX:

tetrodotoxin

VIP:

vasoactive intestinal peptide

References

  • Ahrens FA, Zhu B (1982a) Effects of indomethacin, acetazolamide, ethacrynate sodium, and atropine on intestinal secretion mediated by Escherichia coli heat-stable enterotoxin in pig jejunum. Can J Physiol Pharmacol 60:1281–1286

    Google Scholar 

  • Ahrens FA, Zhu B (1982b) Effects of epinephrine, clonidine, L-phenyl-ephrine and morphine on intestinal secretion mediated by Escherichia coli heat-stable enterotoxin in pig jejunum. Can J Physiol Pharmacol 60:1680–1685

    Google Scholar 

  • Anagnostides AA, Christofides ND, Tatemoto K, Bloom SR, Chadwick VS (1983a) Secretory effects of peptide histidine isoleucine (PHI) in human jejunum. Scand J Gastroenterol 18 [Suppl 87]:112–113

    Google Scholar 

  • Anagnostides AA, Manola K, Christofides ND, Yiangou Y, Welbourn RB, Bloom SR, Chadwick VS (1983b) Peptide histidine isoleucine (PHI). A secretagogue in porcine intestine. Dig Dis Sci 28:893–896

    Google Scholar 

  • Andres H, Bock R, Bridges RJ, Rummel W, Schreiner J (1985) Submucosal plexus and electrolyte transport across rat colonic mucosa. J Physiol (Lond) 364:301–312

    Google Scholar 

  • Aulesbrook KA (1965a) Intestinal absorption of glucose and sodium: effects of epinephrine and norepinephrine. Biochem Biophys Res Commun 18:165–169

    Google Scholar 

  • Aulesbrook KA (1965b) Intestinal transport of glucose and sodium: stimulation by reserpine and the humoral mechanisms involved. Proc Soc Exp Biol Med 119:387–389

    Google Scholar 

  • Babkin BP (1950) Secretory mechanism of the digestive glands, 2nd edn. Hoeber, New York, pp 614–632

    Google Scholar 

  • Baldissera FGA, Holst JJ, Jensen SL, Krarup T (1985) Distribution and molecular forms of peptides containing somatostatin immunodeterminants in extracts from the entire gastrointestinal tract of man and pig. Biochim Biophys Acta 838:132–143

    Google Scholar 

  • Barbezat GO, Grossman MI (1971) Intestinal secretion: stimulation by peptides. Science 174:422–424

    Google Scholar 

  • Barbezat GD, Reasbeck PG (1983) Effects of bombesin, calcitonin and enkephalin on canine jejunal water and electrolyte transport. Dig Dis Sci 28:273–277

    Google Scholar 

  • Baskin DG, Ensinck JW (1984) Somatostatin in epithelial cells of intestinal mucosa is present primarily as somatostatin 28. Peptides 5:615–621

    Google Scholar 

  • Bataille D, Gespach C, Laburthe M, Amiranoff B, Tatemoto K, Vaculin N, Mutt V, Rosselin G (1980) Porcine peptide having N-terminal histidine and C-terminal isoleucine (PHI). Vasoactive intestinal peptide (VIP) and secretin-like effect in different tissues from the rat. FEBS Lett 114:240–242

    Google Scholar 

  • Baumgarten HG (1967) Ãœber die Verteilung von Catecholaminen im Darm des Menschen. Z Zellforsch 83:133–146

    Google Scholar 

  • Berkley HJ (1893) The nerves and nerve endings of the mucous layer of the ileum, as shown by the rapid Golgi method. Anat Anz 8:12–19

    Google Scholar 

  • Bernard C (1859) Leçons sur les liquides de l'organisme. Ballière, Paris

    Google Scholar 

  • Bernard C (1864) Du rôle des actions réflexes paralysantes dans les phénomènes des sécrétions. J Anat (Paris) 1:507–513

    Google Scholar 

  • Beubler E (1980) Influence of vasoactive intestinal polypeptide on net water flux and cyclic adenosine 3′,5′-monophosphate formation in the rat jejunum. Naunyn-Schmiedeberg's Arch Pharmacol 313:243–247

    Google Scholar 

  • Beubler E (1981) VIP and PGE1 activate adenylate cyclase in rat intestinal epithelial cell membranes via different mechanisms. Eur J Pharmacol 74:67–72

    Google Scholar 

  • Beubler E, Lembeck F (1979) Inhibition of stimulated fluid secretion in the rat small and large intestine by opiate agonists. Naunyn-Schmiedeberg's Arch Pharmacol 306:113–118

    Google Scholar 

  • Beubler E, Lembeck F (1980) Inhibition by morphine of prostaglandin-E1-stimulated secretion and cyclic adenosine 3′,5′-monophosphate formation in the rat jejunum in vivo. Br J Pharmacol 68:513–518

    Google Scholar 

  • Beubler E, Bukhave K, Rask-Madsen J (1984) Colonic secretion mediated by prostaglandin-E2 and 5-hydroxytryptamine may contribute to diarrhea due to morphine withdrawal in the rat. Gastroenterology 87:1042–1048

    Google Scholar 

  • Biber B, Lundgren O, Svanvik J (1971) Studies on the intestinal vasodilatation observed after mechanical stimulation of the mucosa of the gut. Acta Physiol Scand 82:177–190

    Google Scholar 

  • Billroth H (1858) Einige Beobachtungen über das ausgedehnte Vorkommen von Nervenanastomosen im Tractus intestinalis. Arch Anat Physiol (Leipzig) 2:148–158

    Google Scholar 

  • Binder HJ, Laurensen JP, Dobbins JW (1984) Role of opiate receptors in regulation of enkephalin stimulation of active sodium and chloride absorption. Am J Physiol 247:G432–G436

    Google Scholar 

  • Björck S, Phillips SF, Kelly KA (1984) Mechanisms of enhanced intestinal absorption with electrical pacing. Gastroenterology 86:1029

    Google Scholar 

  • Blickenstaff DD, Lewis LJ (1952) Effect of atropine on intestinal absorption of water and chloride. Am J Physiol 170:17–23

    Google Scholar 

  • Bloom SR, Polak JM, Pearse AGE (1973) Vasoactive intestinal polypeptide and watery-diarrhea syndrome. Lancet II:14–16

    Google Scholar 

  • Bloom SR, Delamarter J, Kawashima E, Christofides ND, Buell G, Polak JM (1983) Diarrhoea in VIPoma patients associated with cosecretion of a second active peptide (peptide histidine isoleucine) explained by a single coding gene. Lancet II:1163–1165

    Google Scholar 

  • Boige N, Munck A, Laburthe M (1984) Adrenergic versus VIPergic control of cyclic AMP in human colonic crypts. Peptides 5:379–383

    Google Scholar 

  • Bolton J, Field M (1977) Calcium ionophore-stimulated ion secretion in rabbit ileal mucosa: relation to actions of cyclic AMP and carbamylcholine. J Membr Biol 35:159–173

    Google Scholar 

  • Bornstein JC, Costa M, Furness JB (1986) Synaptic inputs to immunohistochemically identified neurones in the submucous plexus of the guinea-pig small intestine. J Physiol (Lond) 381:465–482

    Google Scholar 

  • Bornstein JC, Furness JB, Costa M (1987) Sources of synaptic inputs to neurochemically indentified submucous neurones of guinea-pig small intestine. J Auton Nerv Syst 18:83–91

    Google Scholar 

  • Breiter W, Frey H (1862) Zur Kenntnis der Ganglien der Darmwand des Menschen. Z Wiss Zool 11:125–134

    Google Scholar 

  • Brodin E, Sjölund K, HÃ¥kanson R, Sundler F (1983) Substance P-containing nerve fibers are numerous in human but not in feline intestinal mucosa. Gastroenterology 85:557–564

    Google Scholar 

  • Brown DR, Miller RJ (1984) Adrenergic mediation of the intestinal antisecretory action of opiates administered into the central nervous system. J Pharmacol Exp Ther 231:114–119

    Google Scholar 

  • Browning JG, Hardcastle J, Hardcastle PT, Sanford PA (1977) The role of acetylcholine in the regulation of ion transport by rat colon mucosa. J Physiol (Lond) 272:737–754

    Google Scholar 

  • Browning JG, Hardcastle J, Hardcastle PT, Redfern JS (1978) Localization of the effect of acetylcholine in regulating intestinal ion transport. J Physiol (Lond) 281:15–27

    Google Scholar 

  • Broyart JP, Dupont C, Laburthe M, Rosselin G (1981) Characterization of vasoactive intestinal peptide receptors in human colonic epithelial cells. J Clin Endocrinol Metab 52:715–721

    Google Scholar 

  • Brunemeier EH, Carlson AJ (1914) Contributions to the physiology of the stomach. XIX. Reflexes from the intestinal mucosa to the stomach. Am J Physiol 36:191–195

    Google Scholar 

  • Brunnson I, Eklund S, Jodal M, Lundgren O, Sjövall H (1979) The effect of vasodilatation and sympathetic nerve activation on net water absorption in the cat's small intestine. Acta Physiol Scand 106:61–68

    Google Scholar 

  • Brunsson I, Sjöqvist A, Jodal M, Lundgren O (1985) Mechanisms underlying the intestinal fluid secretion evoked by nociceptive serosal stimulation of the rat. Naunyn-Schmiedeberg's Arch Pharmacol 328:439–445

    Google Scholar 

  • Brunton TL, Pye-Smith PH (1876) The conditions of intestinal secretion and movement. Br Assn Adv Sci, John Murray, London, pp 308–314

    Google Scholar 

  • Bryan MG, Polak JM, Modlin I, Bloom SR, Albuquerque RH, Pearse AGE (1976) Possible dual role for vasoactive intestinal peptide as gastrointestinal hormone and neurotransmitter substance. Lancet I:991–993

    Google Scholar 

  • Bülbring E, Lin RCY, Schofield G (1958) An investigation of the peristaltic reflex in relation to anatomical observations. Q J Exp Physiol 43:26–37

    Google Scholar 

  • Bunce KT, Spraggs CF (1983) a 2-Adrenoceptors mediate the antisecretory effects of a-adrenoceptor agonists in rat jejunum. Scand J Gastroenterol 18 [Suppl 87]:105

    Google Scholar 

  • Bunch GA, Shields R (1973) The effects of vagotomy on intestinal handling of water and electrolytes. Gut 14:116–119

    Google Scholar 

  • Camilleri M, Cooper BT, Adrian TE, Bloom SR, Chadwick VS (1981) Effects of vasoactive intestinal peptide and pancreatic polypeptide in rabbit intestine. Gut 22:14–18

    Google Scholar 

  • Caren JF, Meyer JH, Grossman MI (1974) Canine intestinal secretion during and after rapid distension of the small bowel. Am J Physiol 227:183–188

    Google Scholar 

  • Carey HV, Cooke HJ, Zafirova M (1985) Mucosal responses evoked by stimulation of ganglion cell somas in the submucosal plexus of the guinea-pig ileum. J Physiol (Lond) 364:69–80

    Google Scholar 

  • Carter RF, Bitar KN, Zfass AM, Makhlouf GM (1978) Inhibition of VIP-stimulated intestinal secretion and cyclic AMP production by somatostatin in the rat. Gastroenterology 74:726–730

    Google Scholar 

  • Cartwright C, McRoberts J, Masui H, Lindeborg D, Dharmsathaphorn K (1984) Quinidine reversal of VIP-stimulated chloride secretion in a human colonic epithelial cell line. Gastroenterology 86:1042

    Google Scholar 

  • Cassuto J, Fahrenkrug J, Jodal M, Tuttle R, Lundgren O (1981a) Release of vasoactive intestinal polypeptide from the cat small intestine exposed to cholera toxin. Gut 22:958–963

    Google Scholar 

  • Cassuto J, Jodal M, Tuttle R, Lundgren O (1981b) On the role of intramural nerves in the pathogenesis of cholera toxin-induced intestinal secretion. Scand J Gastroenterol 16:377–384

    Google Scholar 

  • Cassuto J, Jodal M, Tuttle R, Lundgren O (1982a) 5-hydroxytryptamine and cholera secretion: physiological and pharmacological studies in cats and rats. Scand J Gastroenterol 17:695–703

    Google Scholar 

  • Cassuto J, Sjövall H, Jodal M, Svanvik J, Lundgren O (1982b) The adrenergic influence on intestinal secretion in cholera. Acta Physiol Scand 115:157–158

    Google Scholar 

  • Cassuto J, Siewert A, Jodal M, Lundgren O (1983) The involvement of intramural nerves in cholera toxin induced intestinal secretion. Acta Physiol Scand 117:195–202

    Google Scholar 

  • Cavazzana P, Borsetto PL (1948) Recherches sur l'aspect microscopique des plexus nerveux intramuraux et sur les modifications morphologiques des leurs neurones dans les divers traits de l'intestin humain pendant la vie. Acta Anat (Basel) 5:17–41

    Google Scholar 

  • Chang EB, Field M, Miller RJ (1982) a 2-Adrenergic receptor regulation of ion transport in rabbit ileum. Am J Physiol 242:G237–G242

    Google Scholar 

  • Chang EB, Field M, Miller RJ (1983) Enterocyte a 2-adrenergic receptors: yohimbine and paminoclonidine binding relative to ion transport. Am J Physiol 244:G76–G82

    Google Scholar 

  • Chang EB, Brown DR, Field M, Miller RJ (1984) An anti-absorptive basis for precipitated withdrawal diarrhea in morphine-dependent rats. J Pharmacol Exp Ther 228:364–369

    Google Scholar 

  • Chang EB, Bergenstal RM, Field M (1985) Diarrhea in streptozocin-treated rats. Loss of adrenergic regulation of intestinal fluid and electrolyte transport. J Clin Invest 75:1666–1670

    Google Scholar 

  • Clague JR, Sternini C, Brecha NC (1985) Localization of calcitonin gene-related peptide-like immunoreactivity in neurons of the rat gastrointestinal tract. Neurosci Lett 56:63–68

    Google Scholar 

  • Collin J, Kelly KA, Phillips SF (1979) Enhancement of absorption from the intact and transected canine small intestine by electrical pacing. Gastroenterology 76:1422–1428

    Google Scholar 

  • Conley D, Coyne MJ, Chung A, Bonorris GG, Schoenfield LJ (1976) Propranolol inhibits adenylate cyclase and secretion stimulated by deoxycholic acid in the rabbit colon. Gastroenterology 71:72–75

    Google Scholar 

  • Cooke HJ (1984) Influence of enteric cholinergic neurons on mucosal transport in guinea-pig ileum. Am J Physiol 246:G263–G267

    Google Scholar 

  • Cooke HJ (1986) Neurobiology of the intestinal mucosa. Gastroenterology 90:1057–1081

    Google Scholar 

  • Cooke HJ, Carey HV (1984) The role of enteric nerves in cholera toxin-induced intestinal secretion in the guinea-pig ileum. Gastroenterology 86:1053

    Google Scholar 

  • Cooke HJ, Carey HV (1985) Pharmacological analysis of 5-hydroxytryptamine actions on guinea-pig ileal mucosa. Eur J Pharmacol 111:329–337

    Google Scholar 

  • Cooke HJ, Shonnard K, Highison G, Wood JD (1983a) Effects of neurotransmitter release on mucosal transport in guinea-pig ileum. Am J Physiol 245:G745–G750

    Google Scholar 

  • Cooke HJ, Shonnard K, Wood JD (1983b) Effects of neuronal stimulation on mucosal transport in guinea-pig ileum. Am J Physiol 245:G290–G296

    Google Scholar 

  • Costa M, Furness JB (1983) The origins, pathways and terminations of neurons with VIP-like immunoreactivity in the guinea-pig small intestine. Neuroscience 8:665–676

    Google Scholar 

  • Costa M, Furness JB (1984) Somatostatin is present in a subpopulation of noradrenergic nerve fibres supplying the intestine. Neuroscience 13:911–920

    Google Scholar 

  • Costa M, Gabella G (1971) Adrenergic innervation of the alimentary canal. Z Zellforsch 122:357–377

    Google Scholar 

  • Costa M, Furness JB, Gabella G (1971) Catecholamine containing nerve cells in the mammalian myenteric plexus. Histochemie 25:103–106

    Google Scholar 

  • Costa M, Furness JB, Llewellyn-Smith IJ, Davies B, Oliver J (1980) An immunohistochemical study of the projections of somatostatin-containing neurons in the guinea-pig intestine. Neuroscience 5:841–852

    Google Scholar 

  • Costa M, Furness JB, Llewellyn-Smith IJ, Cuello AC (1981) Projections of substance P-containing neurons within the guinea-pig small intestine. Neuroscience 6:411–424

    Google Scholar 

  • Costa M, Furness JB, Yanaihara N, Moody TW (1984) Distribution and projections of neurons with immunoreactivity for both gastrin-releasing peptide and bombesin in the guinea-pig small intestine. Cell Tissue Res 235:285–293

    Google Scholar 

  • Cotterell BJ, Parsons BJ, Poat JA, Roberts PA (1983) A study of rat jejunal a-adrenoceptors. Br J Pharmacol 78:73P

    Google Scholar 

  • Coupar IM (1976) Stimulation of sodium and water secretion without inhibition of glucose absorption in the rat jejunum by vasoactive intestinal peptide (VIP). Clin Exp Pharmacol Physiol 3:615–618

    Google Scholar 

  • Coupar IM (1978) Inhibition by morphine of prostaglandin-stimulated fluid secretion in rat jejunum. Br J Pharmacol 63:57–63

    Google Scholar 

  • Coupar IM (1983) Characterization of the opiate receptor population mediating inhibition of VIP-induced secretion from the small intestine of the rat. Br J Pharmacol 80:371–376

    Google Scholar 

  • Couvineau A, Royer-Fessard C, Fournier A, St. Pierre S, Pipkorn R, Laburthe M (1984) Structural requirements for VIP interaction with specific receptors in human and rat intestinal membranes: effect of nine partial sequences. Biochem Biophys Res Commun 121:493–498

    Google Scholar 

  • Coyne MJ, Bonorris GG, Chung A, Conley D, Schoenfield LJ (1977) Propranolol inhibits bile acid and fatty acid stimulation of cyclic AMP in human colon. Gastroenterology 73:971–974

    Google Scholar 

  • Cuthbert AW, Hickman ME (1985) Indirect effects of adenosine triphosphate on chloride secretion in mammalian colon. J Membrane Biol 86:157–166

    Google Scholar 

  • Dahlström A, Newson B, Naito S, Ueda T, Ahlman A (1984) Further evidence for the presence of sub-epithelial nerve cells in the rat ileum — an immunohistochemical study. Acta Physiol Scand 120:1–6

    Google Scholar 

  • Daniel EE, Costa M, Furness JB, Keast JR (1985) Peptide neurons in the canine small intestine. J Comp Neurol 237:227–238

    Google Scholar 

  • Daniel EE, Furness JB, Costa M, Belbeck L (1987) The projections of chemically identified nerve fibres in canine ileum. Cell Tissue Res 247:377–384

    Google Scholar 

  • Daumerie J, Henquin JC (1982) Somatostatin and the intestinal transport of glucose and other nutrients in the anaesthetised rat. Gut 23:140–145

    Google Scholar 

  • Davis GR, Camp RC, Raskin P, Krejs GJ (1980) Effect of somatostatin infusion on jejunal water and electrolyte transport in a patient with secretory diarrhea due to malignant carcinoid syndrome. Gastroenterology 78:346–349

    Google Scholar 

  • Dermietzel R (1971) Elektronenmikroskopische Untersuchung über die Innervation der Pars pylorica des Mäusemagens. Z Mikrosk Anat Forsch 84:225–256

    Google Scholar 

  • Desaki J, Fujiwara T, Komuro T (1984) A cellular reticulum of fibroblast-like cells in the rat intestine. Scanning and transmission electron microscopy. Arch Histol Jpn 47:179–186

    Google Scholar 

  • Dharmsathaphorn K, Pandol SJ (1986) Mechanism of chloride secretion induced by carbachol in a colonic epithelial cell line. J Clin Invest 77:348–354

    Google Scholar 

  • Dharmsathaphorn K, Binder HJ, Dobbins JW (1980a) Somatostatin stimulates sodium and chloride absorption in the rabbit ileum. Gastroenterology 78:1559–1564

    Google Scholar 

  • Dharmsathaphorn K, Sherwin RS, Dobbins JW (1980b) Somatostatin inhibits fluid secretion in the rat jejunum. Gastroenterology 78:1554–1558

    Google Scholar 

  • Dharmsathaphorn K, Harms V, Yamashiro DJ, Hughes RJ, Binder HJ, Wright EM (1983) Preferential binding of vasoactive intestinal polypeptide to basolateral membrane of rat and rabbit enterocytes. J Clin Invest 71:27–35

    Google Scholar 

  • Dharmsathaphorn K, McRoberts JA, Mandel JG, Tisdale LD, Masui H (1984) A human colonic tumor cell line that maintains vectorial electrolyte transport. Am J Physiol 246:G204–G208

    Google Scholar 

  • Dharmsathaphorn K, Mandel KG, Masui H, McRoberts JA (1985) Vasoactive intestinal polypeptide-induced chloride secretion by a colonic epithelial cell line. Direct participation of a basolaterally localized Na+, K+, Cl− cotransport system. J Clin Invest 75:462–471

    Google Scholar 

  • Dimaline R, Dockray GJ (1978) Multiple immunoreactive forms of vasoactive intestinal peptide in human colonic mucosa. Gastroenterology 75:387–392

    Google Scholar 

  • Dimaline R, Vaillant C, Dockray GJ (1980) The use of region-specific antibodies in the characterization and localization of vasoactive intestinal polypeptide-like substance in the rat gastrointestinal tract. Regul Pept 1:1–16

    Google Scholar 

  • Dobbins JW, Racusen L, Binder HJ (1980) Effect of D-alanine methionine-enkephaline amide on ion transport in rabbit ileum. J Clin Invest 66:19–28

    Google Scholar 

  • Dobbins JW, Dharmsathaphorn K, Racusen L, Binder HJ (1981) The effect of somatostatin and enkephalin in ion transport in the intestine. Ann NY Acad Sci 372:594–612

    Google Scholar 

  • Dockray GJ, Vaillant C, Walsh JH (1979) The neuronal origin of bombesin-like immunoreactivity in the rat gastrointestinal tract. Neuroscience 4:1561–1568

    Google Scholar 

  • Dogiel AS (1896) Zwei Arten sympathischer Nervenzellen. Anat Anz 11:679–687

    Google Scholar 

  • Doherty NS, Hancock AA (1983) Role of alpha-2 adrenergic receptors in the control of diarrhea and intestinal motility. J Pharmacol Exp Ther 225:269–274

    Google Scholar 

  • Donowitz M, Charney AN (1979) Propranolol prevention of cholera enterotoxin-induced secretion in the rat. Gastroenterology 76:482–491

    Google Scholar 

  • Donowitz M, Fogel R, Battisti L, Asarkof N (1982) The neurohumoral secretagogues carbachol, substance P and neurotensin increase calcium ion flux and calcium content in rabbit ileum. Life Sci 31:1929–1937

    Google Scholar 

  • Drasch O (1881) Beiträge zur Kenntnis des feineren Baues des Dünndarms insbesondere über die Nerven desselben. Sitzungsber Akad Wiss Wien Math Natur 82:168–198

    Google Scholar 

  • Driel C, Drukker J van (1973) A contribution to the study of the architecture of the autonomic nervous system of the digestive tract of the rat. J Neural Transm 34:301–320

    Google Scholar 

  • Dupont C, Laburthe M, Broyart JP, Bataille D, Rosselin G (1980) Cyclic AMP production in isolated colonic epithelial crypts: a highly sensitive model for the evaluation of vasoactive intestinal peptide in human intestine. Eur J Clin Invest 10:67–76

    Google Scholar 

  • Durbin T, Rosenthal L, McArthur K, Anderson D, Dharmsathaphorn K (1982) Clonidine and lidamidine (WHR-1142) stimulate sodium and chloride absorption in the rabbit intestine. Gastroenterology 82:1352–1358

    Google Scholar 

  • Ekblad E, Ekelund M, Graffner H, HÃ¥kanson R, Sundler F (1985) Peptide-containing nerve fibres in the stomach wall of rat and mouse. Gastroenterology 89:73–85

    Google Scholar 

  • Eklund S, Jodal M, Lundgren O, Sjöqvist A (1979) Effects of vasoactive intestinal polypeptide on blood flow, motility and fluid transport in the gastrointestinal tract of the cat. Acta Physiol Scand 105:461–468

    Google Scholar 

  • Eklund S, Cassuto J, Jodal M, Lundgren O (1984) The involvement of the enteric nervous system in the intestinal secretion evoked by cyclic adenosine 3′,5′-monophosphate. Acta Physiol Scand 120:311–316

    Google Scholar 

  • Eklund S, Jodal M, Lundgren O (1985) The enteric nervous system participates in the secretory response to the heat stable enterotoxins of Escherichia coli in rats and cats. Neuroscience 14:673–681

    Google Scholar 

  • Emson PC, de Quidt ME (1984) NPY — a new member of the pancreatic polypeptide family. TINS 7:31–34

    Google Scholar 

  • Farack JM, Loeschke K (1984) Inhibition by loperamide of deoxycholic acid induced intestinal secretion. Naunyn-Schmiedeberg's Arch Pharmacol 325:286–289

    Google Scholar 

  • Farack UM, Kautz U, Loeschke K (1981) Loperamide reduces the intestinal secretion but not the mucosal cyclic AMP accumulation induced by cholera toxin. Naunyn-Schmiedeberg's Arch Pharmacol 317:178–179

    Google Scholar 

  • Favus MJ, Berelowitz M, Coe FL (1981) Effects of somatostatin on intestinal calcium transport in the rat. Am J Physiol 241:215–221

    Google Scholar 

  • Fehér E, Léránth C (1983) Light and electron microscopic immunocytochemical localization of vasoactive intestinal polypeptide VIP-like activity in the rat small intestine. Neuroscience 10:97–106

    Google Scholar 

  • Fehér E, Vajda J (1974) Degeneration analysis of the extrinsic nerve elements of the small intestine. Acta Anat (Basel) 87:97–109

    Google Scholar 

  • Fehér E, Wenger T (1981) Ultrastructural immunocytochemical localization of substance P in the cat small intestine. Acta Histochem (Jena) 150:137–143

    Google Scholar 

  • Ferri G-L, Botti PL, Vezzadini P, Biliotti G, Bloom SR, Polak JM (1982) Peptide-containing innervation of the human intestinal mucosa. An immunocytochemical study on whole mount preparations. Histochemistry 76:413–420

    Google Scholar 

  • Ferri G-L, Adrian TE, Ghatei MA, O'Shaughnessy DJ, Probert L, Lee YC, Buchan AMJ, Polak JM, Bloom SR (1983) Tissue localization and relative distribution of regulatory peptides in separated layers from the human bowel. Gastroenterology 84:777–786

    Google Scholar 

  • Ferri G-L, Botti P, Biliotti G, Rebecchi L, Bloom SR, Tonelli L, Labo G, Polak JM (1984) VIP-, substance P-and met-enkephalin-immunoreactive innervation of the human gastroduodenal mucosa and Brunner's glands. Gut 25:948–952

    Google Scholar 

  • Field M, McColl I (1973) Ion transport in rabbit ileal mucosa. III. Effects of catecholamines. Am J Physiol 225:852–857

    Google Scholar 

  • Field M, Sheerin HE, Henderson A, Smith PL (1975) Catecholamine effects on cyclic AMP levels and ion secretion in rabbit ileal mucosa. Am J Physiol 229:86–92

    Google Scholar 

  • Flemström G, Heylings JR, Garner A (1982) Gastric and duodenal HCO −3 -transport in vitro: effects of hormones and local transmitters. Am J Physiol 242:G100–G110

    Google Scholar 

  • Flemström G, Kivilaakso E, Briden S, Nylander O, Jedstedt G (1985) Gastroduodenal bicarbonate secretion in mucosal protection. Possible role of vasoactive intestinal peptide and opiates. Dig Dis Sci 30:63–68

    Google Scholar 

  • Florey HW, Wright RD, Jennings MA (1941) The secretions of the intestine. Physiol Rev 21:36–69

    Google Scholar 

  • Fogel R, Kaplan RB (1984) Role of enkephalins in regulation of basal intestinal water and ion absorption in the rat. Am J Physiol 246:G386–G392

    Google Scholar 

  • Freedman J, Rasmussen H, Dobbins JW (1980) Somatostatin stimulates coupled sodium chloride influx across the brush border of the rabbit ileum. Biochem Biophys Res Commun 97:243–247

    Google Scholar 

  • Friel DD, Miller RJ, Walker MW (1986) Neuropeptide Y: a powerful modulator of epithelial ion transport. Br J Pharmacol 88:425–431

    Google Scholar 

  • Furness JB, Costa M (1978) Distribution of intrinsic nerve cell bodies and axons which take up aromatic amines and their precursors in the small intestine of the guinea-pig. Cell Tissue Res 188:527–543

    Google Scholar 

  • Furness JB, Costa M (1987) The enteric nervous system. Churchill Livingstone, Edinburgh

    Google Scholar 

  • Furness JB, Eskay RL, Brownstein MJ, Costa M (1980) Characterization of somatostatin-like immunoreactivity in intestinal nerves by high pressure liquid chromatography and radioimmunoassay. Neuropeptides 1:97–103

    Google Scholar 

  • Furness JB, Costa M, Eckenstein F (1983a) Neurons localized with antibodies against choline acetyltransferase in the enteric nervous system. Neurosci Lett 40:105–109

    Google Scholar 

  • Furness JB, Costa M, Emson PC, HÃ¥kanson R, Moghimzadeh E, Sundler F, Taylor IL, Chance RE (1983b) Distribution, pathways and reactions to drug treatment of nerves with neuropeptide Y and pancreatic polypeptide-like immunoreactivity in the guinea-pig digestive tract. Cell Tissue Res 234:71–92

    Google Scholar 

  • Furness JB, Costa M, Miller RJ (1983c) Distribution and projections of nerves with enkephalinlike immunoreactivity in the guinea-pig small intestine. Neuroscience 8:653–664

    Google Scholar 

  • Furness JB, Costa M, Keast JR (1984) Choline acetyltransferase and peptide immunoreactivity of submucous neurons in the small intestine of the guinea-pig. Cell Tissue Res 237:328–336

    Google Scholar 

  • Furness JB, Costa M, Gibbins IL, Llewellyn-Smith IJ, Oliver JR (1985) Neurochemically similar myenteric and submucous neurons directly traced to the mucosa of the small intestine. Cell Tissue Res 241:155–163

    Google Scholar 

  • Furness JB, Llewellyn-Smith IJ, Bornstein JC, Costa M (1986) Neuronal circuitry in the enteric nervous system. In: Owman C, Bjorklund A, Hökfelt T (eds) Handbook of chemical neuroanatomy. Elsevier, Amsterdam

    Google Scholar 

  • Fuxe K, Hökfelt T, Said S, Mutt V (1977) Vasoactive intestinal polypeptide and the nervous system: immunohistochemical evidence for localization in central and peripheral neurons, particularly intra-cortical neurons of the cerebral cortex. Neurosci Lett 5:241–246

    Google Scholar 

  • Gabella G, Costa M (1967) Le fibre adrénergiche del canale alimentare. Giorn Acc Med Torino 130:1–12

    Google Scholar 

  • Gabella G, Costa M (1968) Adrenergic fibres in the mucous membrane of guinea-pig alimentary tract. Experientia 24:706–707

    Google Scholar 

  • Gabella G, Juorio AV (1975) Effect of extrinsic denervation on endogenous noradrenaline and 3H-[noradrenaline] uptake in the guinea-pig colon. J Neurochem 25:631–634

    Google Scholar 

  • Gaginella TS (1984) Cholinergic modulation of transport. Fed Proc 43:2930–2931

    Google Scholar 

  • Gaginella TS, Mekhjian HS, O'Dorisio TM (1978a) Vasoactive intestinal peptide: quantification by radioimmunoassay in isolated cells, mucosa and muscle of the hamster intestine. Gastroenterology 74:718–721

    Google Scholar 

  • Gaginella TS, O'Dorisio TM, Wu ZC, Mekhjian HS, Cataland S (1978b) Pancreatic polypeptide: effect on fluid transport in the small and large intestine of the rat. Clin Res 26:661

    Google Scholar 

  • Gaginella TS, O'Dorisio TM, Hubel KA (1981) Release of vasoactive intestinal polypeptide by electrical field stimulation of rabbit ileum. Regul Pept 2:165–174

    Google Scholar 

  • Gaginella TS, Rimele TJ, Wietecha M (1983) Studies on rat intestinal epithelial cell receptors for serotonin and opiates. J Physiol (Lond) 335:101–111

    Google Scholar 

  • Gamse R, Saria A, Bucsics A, Lembeck F (1981) Substance P in tumors: pheochromocytoma and carcinoid. Peptides 2 [Suppl 2]:275–280

    Google Scholar 

  • Ghiglione M, Christofides ND, Yiangou Y, Uttenthal LO, Bloom SR (1982) PHI stimulates intestinal fluid secretion. Neuropeptides 3:79–82

    Google Scholar 

  • Gibbins IL (1982) Lack of correlation between ultrastructural and pharmacological types of non-adrenergic autonomic nerves. Cell Tissue Res 221:551–581

    Google Scholar 

  • Goniaew K (1875) Die Nerven des Nahrungsschlauches. Eine histologische Studie. Arch Mikrosk Anat 11:479–496

    Google Scholar 

  • Gordon SJ, Kinsey MD, Magen JS, Joseph RE, Kowlessar OD (1978) Effect of loperamide on bile acid induced secretion in the rat cecum. Gastroenterology 74:1040–1046

    Google Scholar 

  • Granger DN, Cross R, Barrowman JA (1982) Effects of various secretagogues and human carcinoid serum on lymph flow in the cat ileum. Gastroenterology 83:896–901

    Google Scholar 

  • Greenwood B, Davison JS (1985) Role of extrinsic and intrinsic nerves in the relationship between intestinal motility and transmural potential difference in the anaesthetized ferret. Gastroenterology 89:1286–1292

    Google Scholar 

  • Guandalini S, Kachur JF, Smith PL, Miller RJ, Field M (1980) In vitro effects of somatostatin on ion transport in rabbit intestine. Am J Physiol 283:G67–G74

    Google Scholar 

  • Hanau A (1886) Experimentelle Untersuchungen über die Physiologie der Darmsekretion. Z Biol 22:195–235

    Google Scholar 

  • Hansson H-A, Lange S, Lönnroth I (1984) Internalization in vivo of cholera toxin in the small intestinal epithelium of the rat. Acta Pathol Microbiol Immunol Scand [B] 92:15–21

    Google Scholar 

  • Hardcastle PT, Eggenton J (1973) The effect of acetylcholine on the electrical activity of intestinal epithelial cells. Biochim Biophys Acta 298:95–100

    Google Scholar 

  • Hardcastle J, Hardcastle PT, Read NW, Redfern JS (1981a) The action of loperamide in inhibiting prostaglandin induced intestinal secretion in the rat. Br J Pharmacol 74:563–569

    Google Scholar 

  • Hardcastle J, Hardcastle PT, Redfern JS (1981b) Action of 5-hydroxytryptamine on intestinal ion transport in the rat. J Physiol (Lond) 320:41–55

    Google Scholar 

  • Hardcastle J, Hardcastle PT, Noble JM (1983) The role of calcium in intestinal secretion in the rat in vitro. J Physiol 338:51P

    Google Scholar 

  • Heitz P, Polak JM, Timson CM, Pearse AGE (1976) Enterochromaffin cells as the endocrine source of gastrointestinal substance. P. Histochemistry 49:343–347

    Google Scholar 

  • Hill CJ (1927) VIII. A contribution to our knowledge of the enteric plexuses. Philos Trans Roy Soc Lond [B] 215:355–387

    Google Scholar 

  • Hirst GDS, McKirdy HC (1975) Synaptic potentials recorded from neurones of the submucous plexus of guinea-pig small intestine. J Physiol (Lond) 249:369–386

    Google Scholar 

  • Hökfelt T, Johansson O, Efendic S, Luft R, Arimura A (1975) Are there somatostatin-containing nerves in the rat gut? Immunohistochemical evidence for a new type of peripheral nerves. Experientia 31:852–854

    Google Scholar 

  • Holzer P, Bucsics A, Saria A, Lembeck F (1982) A study of the concentrations of substance P and neurotensin in the gastrointestinal tract of various mammals. Neuroscience 7:2919–2924

    Google Scholar 

  • Honjin R (1951) Studies on the nerve endings in the small intestine. Cyt Neurol Stud 9:1–14

    Google Scholar 

  • Honjin R, Takahashi A (1966) Electron microscopy of synaptic nerve endings in the walls of the digestive tract. Symp Cell Chem 16:59–74

    Google Scholar 

  • Honjin R, Takahashi A, Tasaki Y (1965) Electron microscopy of nerve endings in the mucous membrane of human intestine. Okajimas Folia Anat Jpn 40:409–427

    Google Scholar 

  • Hoyes AD, Barber P (1981) Degeneration of axons in the ureteric and duodenal nerve plexuses of the adult rat following in vivo treatment with capsaicin. Neurosci Lett 25:19–24

    Google Scholar 

  • Hubel KA (1976) Intestinal ion transport: effect of norepinephrine, pilocarpine and atropine. Am J Physiol 231:252–257

    Google Scholar 

  • Hubel KA (1977) Effects of bethanechol on intestinal ion transport in the rat. Proc Soc Exp Biol Med 154:41–44

    Google Scholar 

  • Hubel KA (1978) The effects of electrical field stimulation and tetrodotoxin on ion transport by the isolated rabbit ileum. J Clin Invest 62:1039–1047

    Google Scholar 

  • Hubel KA (1983) Effects of scorpion venom on electrolyte transport by rabbit ileum. Am J Physiol 244:G501–G506

    Google Scholar 

  • Hubel KA (1984) Electrical stimulus-secretion coupling in rabbit ileal mucosa. J Pharmacol Exp Ther 231:577–582

    Google Scholar 

  • Hubel KA (1985) Intestinal nerves and ion transport: stimuli, reflexes, and responses. Am J Physiol 248:G261–G271

    Google Scholar 

  • Hubel KA, Callanan D (1980) Effects of calcium ions on ileal transport and electrically induced secretion. Am J Physiol 239:G18–G22

    Google Scholar 

  • Hubel KA, Renquist KS (1985) Neuropeptide Y selectively increases chloride absorption. Gastroenterology 88:1423

    Google Scholar 

  • Hubel KA, Shirazi S (1982) Human ileal transport in vitro: changes with electrical field stimulation and tetrodotoxin. Gastroenterology 83:63–68

    Google Scholar 

  • Hubel KA, Renquist KS, Shirazi S (1983) Intramural cholinergic nerves affect mucosal ion transport by the left colon of man. Gastroenterology 64:1192

    Google Scholar 

  • Hubel KA, Renquist KS, Shirazi S (1984) Neural control of ileal ion transport: role of substance P (SP) in rabbit and man. Gastroenterology 86:1118

    Google Scholar 

  • Hughes S, Higgs NB, Turnberg LA (1982) Antidiarrhoeal activity of loperamide: studies of its influence on ion transport across rabbit ileal mucosa in vitro. Gut 23:974–979

    Google Scholar 

  • Hughes S, Higgs NB, Turnberg LA (1984) Loperamide has anti-secretory activity in the human jejunum in vivo. Gut 25:931–935

    Google Scholar 

  • Hukuhara T, Yamagami M, Nakayama S (1958) On the intestinal intrinsic reflexes. Jpn J Physiol 8:9–20

    Google Scholar 

  • Isaacs PET, Corbett CL, Riley AK, Hawker PC, Turnberg LA (1976) In vitro behaviour of human intestinal mucosa: the influence of acetylcholine on ion transport. J Clin Invest 58:535–542

    Google Scholar 

  • Isaacs PET, Whitehead JS, Kim YS (1982) Muscarinic acetylcholine receptors of the small intestine and pancreas of the rat: distribution and the effect of vagotomy. Clin Sci 62:203–207

    Google Scholar 

  • Isenberg JI, Wallin B, Johanssen C, Smedfors B, Mutt V, Tatemoto K, Emas S (1984) Secretin, VIP and PHI stimulate rat proximal duodenal surface epithelial bicarbonate secretion in vivo. Regul Pept 8:315–320

    Google Scholar 

  • Ishikawa N (1926) Experimentelle Untersuchungen über die Dickdarminnervation, insbesondere des Colon descendens und sigmoideum. Jpn J Med Sci 3:21–22

    Google Scholar 

  • Ito T, Kubo M (1940) Zytologische Untersuchungen über die intramuralen Ganglienzellen des Verdauungstraktes. Ãœber die Ganglienzellen des menschlichen Darmes, mit besonderer Berücksichtigung auf die Nisslsubstanz. Cytologia (Tokyo) 10:334–347

    Google Scholar 

  • Ito S, Iwanaga T, Yamada Y, Shibata A (1982) Somatostatin-28 like immunoreactivity in the human gut. Horm Metab Res 14:500–501

    Google Scholar 

  • Jacobowitz D (1965) Histochemical studies of the autonomic innervation of the gut. J Pharmacol Exp Ther 149:358–364

    Google Scholar 

  • Jaros W, Biller J, Greer S, Grand R (1985) Successful treatment of idiopathic secretory diarrhea of infancy with a somatostatin analogue SMS 201–995. Gastroenterology 88:1432

    Google Scholar 

  • Jessen KR, Saffrey MJ, van Noorden S, Bloom SR, Polak JM, Burnstock G (1980) Immunohistochemical studies of the enteric nervous system in tissue culture and in situ: localization of vasoactive intestinal polypeptide (VIP), substance P and enkephalin immunoreactive nerve in the guinea-pig gut. Neuroscience 5:1717–1735

    Google Scholar 

  • Kachur JF, Miller RJ (1982) Characterization of the opiate receptor in the guinea-pig ileal mucosa. Eur J Pharmacol 81:177–183

    Google Scholar 

  • Kachur JF, Miller RJ, Field M (1980) Control of guinea pig intestinal electrolyte secretion by a delta-opiate receptor. Proc Natl Acad Sci USA 77:2753–2756

    Google Scholar 

  • Kachur JF, Miller RJ, Field M, Rivier J (1982) Neurohumoral control of ileal electrolyte transport. II. Neurotensin and substance P. J Pharmacol Exp Ther 20:456–463

    Google Scholar 

  • Karlström L, Cassuto J, Jodal M, Lundgren O (1983) The importance of the enteric nervous system for the bile salt-induced secretion in the small intestine of the rat. Scand J Gastroenterol 18:117–123

    Google Scholar 

  • Keast JR, Furness JB, Costa M (1984a) Somatostatin in human enteric nerves. Distribution and characterization. Cell Tissue Res 237:299–308

    Google Scholar 

  • Keast JR, Furness JB, Costa M (1984b) The origins of peptide and norepinephrine nerves in the mucosa of the guinea pig small intestine. Gastroenterology 86:637–644

    Google Scholar 

  • Keast JR, Furness JB, Costa M (1985a) Different substance P receptors are found on mucosal epithelial cells and submucous neurons of the guinea-pig small intestine. Naunyn-Schmiedeberg's Arch Pharmacol 329:382–387

    Google Scholar 

  • Keast JR, Furness JB, Costa M (1985b) Distribution of certain peptide-containing nerves and endocrine cells in the gastrointestinal mucosa in five mammalian species. J Comp Neurol 236:403–422

    Google Scholar 

  • Keast JR, Furness JB, Costa M (1985c) Investigations of nerve populations influencing ion transport that can be stimulated electrically, by serotonin and by a nicotinic agonist. Naunyn-Schmiedeberg's Arch Pharmacol 331:260–266

    Google Scholar 

  • Keast JR, Furness JB, Costa M (1986) Effects of noradrenaline and somatostatin on basal and stimulated mucosal ion transport in the guinea-pig small intestine. Naunyn-Schmiedeberg's Arch Pharmacol 337:393–399

    Google Scholar 

  • Keast JR, Furness JB, Costa M (1987) Distribution of peptide-containing neurons and endocrine cells in the rabbit gastrointestinal tract, with particular reference to the mucosa. Cell Tissue Res 248:565–567

    Google Scholar 

  • Kishimoto S, Konemori R, Mikai T, Kambara A, Okamotu K, Shimizu S, Iwasaki T, Daitoku K, Kajiyama G, Miyoshi A, Yanaihara N (1984) VIPergic innervation in rats with congenital aganglionic colon. Hiroshima J Med Sci 33:369–376

    Google Scholar 

  • Klaeveman HL, Conlon TP, Levy AG, Gardner JD (1975) Effects of gastrointestinal hormones on adenylate cyclase activity in human jejunal mucosa. Gastroenterology 68:667–675

    Google Scholar 

  • Knaffl-Lenz G, Nagaki S (1925) Ãœber die Resorption aus ausgeschalteten Darmschlingen. Naunyn-Schmiedeberg's Arch Exp Path Pharmak 105:109–123

    Google Scholar 

  • Kobayashi S, Suzuki M, Uchida T, Yanaihara N (1984) Enkephalin neurons in the guinea pig duodenum: a light and electron microscopic immunocytochemical study using an antiserum to Methionine-enkephalin-Arg6-Gly7-Leu8. Biomed Res 5:489–506

    Google Scholar 

  • Krasny EJ, Frizzell RA (1984) Fluid secretion by isolated colonic crypts. Fedn Proc 43:1087

    Google Scholar 

  • Krause (1861) Anatomische Untersuchungen. Hannover p 641 (cited from Breiter and Frey, 1862)

    Google Scholar 

  • Krejs GJ (1984) Effect of somatostatin infusion on VIP-induced transport changes in the human jejunum. Peptides 5:271–276

    Google Scholar 

  • Krejs GJ, Fordtran JS (1980) Effect of VIP infusion on water and ion transport in the human jejunum. Gastroenterology 78:722–777

    Google Scholar 

  • Krejs GJ, Barkley RM, Read NW, Fordtran JS (1978) Intestinal secretion induced by VIP: a comparison with cholera toxin in canine jejunum in vivo. J Clin Invest 61:1337–1345

    Google Scholar 

  • Krejs GJ, Browne R, Raskin P (1980) Effect of intravenous somatostatin on jejunal absorption of glucose, amino acids, water and electrolytes. Gastroenterology 78:26–31

    Google Scholar 

  • Krokhina EM (1973) The sympathetic innervation of the gastrointestinal tract of mammals. Arch Anat Micr 62:307–321

    Google Scholar 

  • Kuntz A (1913) On the innervation of the digestive tube. J Comp Neurol 23:173–192

    Google Scholar 

  • Kuntz A (1922) On the occurrence of reflex arcs in the myenteric and submucous plexuses. Anat Rec 24:193–210

    Google Scholar 

  • Kvietys PR, Granger DN, Mortillaro NA, Taylor AE (1979) Effect of atropine on fatty acid induced changes in jejunal blood flow, oxygen consumption and water transport. Physiologist 22:74

    Google Scholar 

  • Laburthe M, Prieto JC, Amiranoff B, Dupont C, Hui Bon Hoa D, Rosselin G (1979) Interaction of vasoactive intestinal peptide with isolated intestinal epithelial cells from rat. 2. Characterization and structural requirements of the stimulatory effect of vasoactive intestinal peptide on production of adenosine 3′,5′-monophosphate. Eur J Biochem 96:239–248

    Google Scholar 

  • Laburthe M, Couvineau A, Rouyer-Fessard C, Moroder L (1985) Interaction of PHM, PHI and 24-glutamine PHI with human VIP receptors from colonic epithelium: comparison with rat intestinal receptors. Life Sci 36:991–995

    Google Scholar 

  • Larsson L-I (1977) Ultrastructural localization of a new neuronal peptide (VIP). Histochemistry 54:173–176

    Google Scholar 

  • Larsson L-I, Fahrenkrug J, Schaffalitzky de Muckadell OB, Sundler F, HÃ¥kanson R, Rehfeld JF (1976) Localization of vasoactive intestinal polypeptide (VIP) to central and peripheral neurons. Proc Natl Acad Sci USA 73:3197–3200

    Google Scholar 

  • Larsson L-I, Polak JM, Buffa R, Sundler F, Solcia E (1979) On the immunocytochemical localization of the vasoactive intestinal polypeptide. J Histochem Cytochem 27:936–938

    Google Scholar 

  • Lassmann G (1975) Vorkommen von Ganglienzellen im Schleimhautstroma von Colon, Sigma und Rectum. Virchows Arch [A] 365:257–261

    Google Scholar 

  • Leander S, Ekman R, Uddman R, Sundler F, HÃ¥kanson R (1984) Neuronal cholecystokinin, gastrin-releasing peptide, neurotensin, and β-endorphin in the intestine of the guinea pig. Distribution and possible motor functions. Cell Tissue Res 235:521–531

    Google Scholar 

  • Levens NR (1985) Control of intestinal absorption by the renin-angiotensin system. Am J Physiol 249:G3–G15

    Google Scholar 

  • Llewellyn-Smith IJ, Furness JB, Murphy R, O'Brien PE, Costa M (1984a) Substance P-containing nerves in the human small intestine. Distribution, ultrastructure and characterization of the immunoreactive peptide. Gastroenterology 86:421–435

    Google Scholar 

  • Llewellyn-Smith IJ, Furness JB, O'Brien PE, Costa M (1984b) Noradrenergic nerves in human small intestine. Distribution and ultrastructure. Gastroenterology 87:513–529

    Google Scholar 

  • Lolova I, Itzev D, Davidoff M (1984) Immunocytochemical localization of substance P, methionine-enkephalin and somatostatin in the cat intestinal wall. J Neural Transmission 60:71–88

    Google Scholar 

  • Lönnroth I, Jennische E (1982) Reversal of enterotoxic diarrhoea by anaesthetic and membrane-stabilizing agents. Acta Pharmacol Toxicol (Copenh) 51:330–335

    Google Scholar 

  • Lopéz-Ruiz MP, Arilla E, Goméz-Pan A, Prieto JC (1985) Interaction of Leu-enkephalin with isolated enterocytes from guinea-pig: binding to specific receptors and stimulation of cAMP accumulation. Biochem Biophys Res Commun 126:404–411

    Google Scholar 

  • Lorén I, Alumets J, HÃ¥kanson R, Sundler F (1979) Immunoreactive pancreatic polypeptide (PP) occurs in the central and peripheral nervous system: preliminary immunocytochemical observations. Cell Tissue Res 200:179–186

    Google Scholar 

  • Lundberg JM, Dahlström A, Bylock A, Ahlman H, Petterson G, Larsson I, Hansson H-A, Kewenter J (1978) Ultrastructural evidence for an innervation of epithelial enterochromaffine cells in the guinea pig duodenum. Acta Physiol Scand 104:3–12

    Google Scholar 

  • Lundberg JM, Terenius L, Hökfelt T, Martling CR, Tatemoto K, Mutt V, Polak J, Bloom S, Goldstein M (1982) Neuropeptide Y (NPY)-like immunoreactivity in peripheral noradrenergic neurons and effects of NPY on sympathetic function. Acta Physiol Scand 116:477–480

    Google Scholar 

  • McFadden D, Zinner MJ, Jaffe BM (1986) Substance P-induced intestinal secretion of water and electrolytes. Gut 27:267–272

    Google Scholar 

  • McFadyen RJ, Allen JM, Bloom SR (1986) NPY stimulates net absorption across rat intestinal mucosa in vivo. Neuropeptides 7:219–227

    Google Scholar 

  • McKay JS, Linaker BD, Turnberg LA (1981) The influence of opiates on ion transport across rabbit ileal mucosa. Gastroenterology 80:279–284

    Google Scholar 

  • Macrae IM, Furness JB, Costa M (1986) Distribution of subgroups of noradrenaline neurons in the coeliac ganglion of the guinea-pig. Cell Tissue Res 244:173–180

    Google Scholar 

  • Maeda M, Takagi H, Kubota Y, Morishima Y, Akai F, Hashimoto S, Mori S (1985) The synaptic relationship between vasoactive intestinal polypeptide (VIP)-like immunoreactive neurons and their axon terminals in the rat small intestine: light and electron microscopic study. Brain Res 329:356–359

    Google Scholar 

  • Mailman D (1978) Effects of VIP on intestinal absorption and blood flow. J Physiol (Lond) 297:121–132

    Google Scholar 

  • Mailman D (1980) Effects of morphine on canine intestinal absorption and blood flow. Br J Pharmacol 68:617–624

    Google Scholar 

  • Mailman D (1984a) Morphine-neural interactions on canine intestinal absorption and blood flow. Br J Pharmacol 81:263–270

    Google Scholar 

  • Mailman D (1984b) Effects of atropine and guanethidine on canine intestinal absorption and blood flow. Life Sci 34:1309–1315

    Google Scholar 

  • Makino K (1955) A histological study of sensory nerves in the small intestine and cecum. Arch Jpn Chir 24:443–455

    Google Scholar 

  • Malmfors G, Leander S, Brodin E, HÃ¥kanson R, Holmin T, Sundler F (1981) Peptide-containing neurons intrinsic to the gut wall. An experimental study in the pig. Cell Tissue Res 214:225–238

    Google Scholar 

  • Märki F (1981) Effect of somatostatin on intestinal absorption of nutrients in the rat. Regul Pept 2:371–381

    Google Scholar 

  • Matthews MR, Cuello AC (1984) The origin and possible significance of substance P immunoreactive networks in the prevertebral ganglia and related structures in the guinea-pig. Phil Trans Roy Soc Lond [B] 306:247–276

    Google Scholar 

  • Mazzanti L, del Tacca M, Breschi MC, Frigo GM, Friedman C, Crema A (1972) The time course of functional and morphological changes of the guinea-pig colon after ‘a frigore’ denervation of the periarterial sympathetic nerves. Acta Neuropathol (Berl) 22:190–199

    Google Scholar 

  • Melander T, Hökfelt T, Rökaeus Ã…, Fahrenkrug J, Tatemoto K, Mutt V (1985) Distribution of galanin-like immunoreactivity in the gastrointestinal tract of several mammalian species. Cell Tissue Res 239:253–270

    Google Scholar 

  • Mihara S, North RA (1986) Opioids increase potassium conductance in submucous neurones of guinea-pig caecum by activating δ-receptors. Br J Pharmacol 88:315–322

    Google Scholar 

  • Mitchenere P, Adrian TE, Kirk RM, Bloom SR (1981) Effect of gut regulatory peptides on intestinal luminal fluid in the rat. Life Sci 29:1563–1570

    Google Scholar 

  • Modlin JM, Bloom SR, Mitchell SJ (1978) Experimental evidence for VIP as a cause of the watery diarrhoea syndrome. Gastroenterology 75:1051–1054

    Google Scholar 

  • Moghimzadeh E, Ekman R, HÃ¥kanson R, Yanaihara N, Sundler F (1983) Neuronal gastrin-releasing peptide in the mammalian gut and pancreas. Neuroscience 10:553–563

    Google Scholar 

  • Molnár B (1909) Zur Analyse des Erregungs-und Hemmungsmechanismus der Darmsaftsekretion. Dtsch Med Wochenschr 35:1384–1385

    Google Scholar 

  • Moriarty KJ, Hegarty JE, Tatemoto K, Mutt V, Christofides ND, Bloom SR, Wood JR (1984) Effect of peptide histidine isoleucine on water and electrolyte transport in the human jejunum. Gut 25:624–628

    Google Scholar 

  • Moriarty KJ, Higgs NB, Woodford M, Turnberg LA (1985) Cholera toxin stimulates secretion in stripped rabbit ileum independently of enteric neural reflexes. Gastroenterology 88:1507

    Google Scholar 

  • Morris AI, Turnberg LA (1980) The influence of a parasympathetic agonist and antagonist on human intestinal transport in vitro. Gastroenterology 79:861–866

    Google Scholar 

  • Morris AI, Turnberg LA (1981) Influence of isoproterenol and propranolol in human intestinal transport in vivo. Gastroenterology 81:1076–1079

    Google Scholar 

  • Müller E (1892) Zur Kenntnis der Ausbreitung und Endigungsweise der Magen-, Darm-und Pankreas-Nerven. Arch Mikr Anat 40:390–409

    Google Scholar 

  • Müller E (1921) Ãœber das Darmnervensystem. Uppsala Läk För, NF 26:1–22

    Google Scholar 

  • Müller LR (1911) Die Darminnervation. Dtsch Arch Klin Med 105:1–43

    Google Scholar 

  • Nakaki T, Nakadate T, Yamamoto S, Kato R (1982) Alpha-2 adrenergic inhibition of intestinal secretion induced by prostaglandin E1, vasoactive intestinal peptide and dibutyryl cyclic AMP in rat jejunum. J Pharmacol Exp Ther 220:637–641

    Google Scholar 

  • Nasset ES, Pierce HB, Murlin HR (1935) Proof of a humoral control of intestinal secretion. Am J Physiol 111:145–158

    Google Scholar 

  • Newson B, Ahlman H, Dahlström A, das Gupta TK, Nyhus LM (1979a) Are there sensory neurons in the mucosa of the mammalian gut? Acta Physiol Scand 105:521–523

    Google Scholar 

  • Newson B, Ahlman H, Dahlström A, das Gupta TK, Nyhus LM (1979b) On the innervation of the ileal mucosa in the rat — a synapse. Acta Physiol Scand 105:387–389

    Google Scholar 

  • Newson B, Dahlström A, Enerbäck L, Ahlman H (1983) Suggestive evidence for a direct innervation of mucosal mast cells. An electron microscopic study. Neuroscience 10:565–570

    Google Scholar 

  • Nilsson G, Larsson L-I, HÃ¥kanson R, Brodin E, Pernow B, Sundler F (1975) Localization of substance P-like immunoreactivity in mouse gut. Histochemistry 43:97–99

    Google Scholar 

  • Nilsson O, Cassuto J, Larsson P-A, Jodal M, Lidberg P, Ahlman H, Dahlström A, Lundgren O (1983) 5-Hydroxytryptamine and cholera secretion: a histochemical and physiological study in cats. Gut 24:542–548

    Google Scholar 

  • Norberg K-A (1964) Adrenergic innervation of the intestinal wall studied by fluorescence microscopy. Int J Neuropharmacol 3:379–384

    Google Scholar 

  • North RA, Surprenant A (1985) Inhibitory synaptic potentials resulting from a 2-adrenoceptor activation in guinea-pig submucous plexus neurons. J Physiol (Lond) 358:17–33

    Google Scholar 

  • Ohkubo K (1936) Studies on the intrinsic nervous system of the digestive tract. I. The submucous plexus of guinea pigs. Jpn J Med Sci 6:1–20

    Google Scholar 

  • Ohkubo K (1937) Studien über das intramurale Nervensystem des Verdauungskanales. III. Affe und Mensch. Jpn J Med Sci Anat 6:219–247

    Google Scholar 

  • Okamura C (1929) Zur Vervollkommnung des Nervenapparatus in der Wand des Verdauungstraktes. Z Anat Entwick 91:627–632

    Google Scholar 

  • Oshima L (1929) Ãœber die Innervation des Darmes. Z Anat Entwick 90:725–767

    Google Scholar 

  • Palay SL, Karlin LJ (1959) An electron microscope study of the intestinal villus. I. The fasting animal. J Biophys Biochem Cytol 5:363–371

    Google Scholar 

  • Parsons BJ, Poat JA, Roberts PA (1983) a-Receptors associated with fluid absorption in rat jejunum and ileum. Br J Pharmacol 79:307P

    Google Scholar 

  • Parsons BJ, Poat JA, Roberts P (1984) Studies of the mechanism of noradrenaline stimulation of fluid absorption by rat jejunum in vitro. J Physiol (Lond) 355:427–439

    Google Scholar 

  • Pearse AGE, Polak JM (1975) Immunocytochemical localization of substance P in mammalian intestine. Histochemistry 41:373–375

    Google Scholar 

  • Penman E, Wass JAH, Butler MG, Penny ES, Price J, Wu P, Rees LH (1983) Distribution and characterisation of immunoreactive somatostatin in human gastrointestinal tract. Regul Pept 7:53–65

    Google Scholar 

  • Pick J (1967) Fine structure of nerve terminals in the human gut. Anat Rec 159:131–146

    Google Scholar 

  • Pitha J (1969) Early fine structural changes in the rabbit upper ileum after superior mesenteric sympathectomy, with special reference to the mucosa. J Ultrastruct Res 26:529–539

    Google Scholar 

  • Pott G, Wagner H, Zierden E, Hilke KH, Jansen H, Hengst K, Gerlach V (1979) Influence of somatostatin on carbohydrate absorption in human small intestine. Klin Wochenschr 57:131–133

    Google Scholar 

  • Prieto JC, Laburthe M, Rosselin G (1979) Interaction of vasoactive intestinal peptide with isolated intestinal epithelial cells from rat. 1. Characterization, quantitative aspects and structural requirements of binding sites. Eur J Biochem 96:229–237

    Google Scholar 

  • Rabinovitch J (1927) Factors influencing the absorption of water and chlorides from the intestine. Am J Physiol 82:279–289

    Google Scholar 

  • Racusen LC, Binder HJ (1977) Alteration of large intestinal electrolyte transport by vasoactive intestinal polypeptide in the rat. Gastroenterology 73:790–796

    Google Scholar 

  • Racusen LC, Binder HJ (1979) Adrenergic interaction with ion transport across colonic mucosa: role of both alpha and beta adrenergic agonists. In: Binder JH (ed) Mechanisms of intestinal secretion. Alan R Liss New York, pp 201–215

    Google Scholar 

  • Ramón y Cajal S (1894) cited from Ramón y Cajal (1911) In: Maloine A (ed) Histologie du système nerveux de l'homme et des vertébrés. Vol II, pp 891–942

    Google Scholar 

  • Rangachari PK, McWade D (1986) Epithelial and mucosal preparations of canine proximal colon in Ussing chambers: comparisons of responses. Life Sci 38:1641–1652

    Google Scholar 

  • Ranson SW (1921) Afferent paths for visceral reflexes. Physiol Rev 1:477–522

    Google Scholar 

  • Rao MB, O'Dorisio TM, Cataland S, George JM, Gaginella TS (1984) Angiotensin II and norepinephrine antagonize the secretory effect of VIP in rat ileum and colon. Peptides 5:291–294

    Google Scholar 

  • Read JB, Burnstock G (1968a) Comparative histochemical studies of adrenergic nerves in the enteric plexuses of vertebrate large intestine. Comp Biochem Physiol 27:505–517

    Google Scholar 

  • Read JB, Burnstock G (1968b) Fluorescent histochemical studies on the mucosa of the vertebrate gastrointestinal tract. Histochemie 16:324–332

    Google Scholar 

  • Read NW, Smallwood RH, Levin RJ, Holdworth CD, Brown BH (1977) Relationship between changes in intraluminal pressure and transmural potential difference in the human and canine jejunum in vivo. Gut 18:141–151

    Google Scholar 

  • Redfors S, Sjövall H (1984) The importance of nervous and humoral factors in the control of vascular resistance, blood flow distribution and net fluid absorption in the cat small intestine during hemorrhage. Acta Physiol Scand 121:305–315

    Google Scholar 

  • Reichert CB (1859) Ãœber die angeblichen Nervenanastomosen im Stratum nerveum S. vasculosum der Darmschleimhaut. Arch Anat Physiol 4:530–536

    Google Scholar 

  • Reid EW (1892) Preliminary report on experiments upon intestinal absorption without osmosis. Br Med J 1:1133–1134

    Google Scholar 

  • Reinecke M, Schlüter P, Yanaihara N, Forssman WG (1981) VIP immunoreactivity in enteric nerves and endocrine cells of the vertebrate gut. Peptides 2:149–156

    Google Scholar 

  • Reiser KA (1933) Ãœber die Endausbreitung des vegetativen Nervensystems. Z Zellforsch 17:610–641

    Google Scholar 

  • Remak R (1858) Ãœber peripherische Ganglien an den Nerven des Nahrungsrohrs. Arch Anat Physiol Wissenschl Med 2:189–192

    Google Scholar 

  • Rimele TJ, Gaginella TS (1982) In vivo identification of muscarinic receptors on rat ileal and colonic epithelial cells: binding of 3H-quinuclidinyl benzilate. Naunyn-Schmiedeberg's Arch Pharmacol 319:18–21

    Google Scholar 

  • Rimele TJ, O'Dorisio MS, Gaginella TS (1981) Evidence for muscarinic receptors on rat colonic epithelial cells: binding of (3H)-quinuclidinyl benzilate. J Pharmacol Exp Ther 218:426–431

    Google Scholar 

  • Rintoul JR (1960) The comparative morphology of the enteric nerve plexuses. M.D. Thesis, St. Andrews University, pp 1–251

    Google Scholar 

  • Rosenthal LE, Yamashiro DJ, Rivier J, Vale W, Brown M, Dharmsathaphorn K (1983) Structure-activity relationships of somatostatin analogs in the rabbit ileum and rat colon. J Clin Invest 71:840–849

    Google Scholar 

  • Sabussow NP (1913) Zur Frage nach der Innervation des Schlundkopfes und der Speiserohre der Säugetiere. Anat Anz 44:64–69

    Google Scholar 

  • Said SI, Faloona GR (1975) Elevated plasma and tissue levels of vasoactive intestinal polypeptide in the watery-diarrhea syndrome due to pancreatic, bronchogenic and other tumours. N Engl J Med 293:155–160

    Google Scholar 

  • Sandhu BK, Tripp JH, Candy DCA, Harries JT (1981) Loperamide: studies on its mechanism of action. Gut 22:658–662

    Google Scholar 

  • Santangelo WC, O'Dorisio TM, Kim JG, Severino G (1985) Effect of a somatostatin analogue on intestinal water and ion transport in pancreatic cholera syndrome. Gastroenterology 88:1570

    Google Scholar 

  • Saria A, Beubler E (1985) Neuropeptide Y (NPY) and peptide YY (PYY) inhibit prostaglandin E2-induced intestinal fluid and electrolyte secretion in the rat jejunum in vivo. Eur J Pharmacol 119:47–52

    Google Scholar 

  • Savitch V, Sochenstvensky NA (1917) L'influence du nerf vague sur la sécrétion de l'intestin. C R Soc Biol (Paris) 69:508–510

    Google Scholar 

  • Schabadasch A (1930) Intramurale Nervengeflechte des Darmrohrs. Z Zellforsch Mikrosk Anat 10:320–385

    Google Scholar 

  • Schiller LR, Santa Ana CA, Morawski SG, Fordtran JS (1985) Studies on the antidiarrheal action of clonidine. Effects on motility and intestinal absorption. Gastroenterology 89:982–988

    Google Scholar 

  • Schofield GC (1960) Experimental studies on the innervation of the mucous membrane of the gut. Brain 83:490–514

    Google Scholar 

  • Schultzberg M, Hökfelt T, Nilsson G, Terenius L, Rehfeld JF, Brown M, Elde R, Goldstein M, Said S (1980) Distribution of peptide-and catecholamine-containing neurons in the gastrointestinal tract of rat and guinea pig: immunohistochemical studies with antisera to substance P, vasoactive intestinal polypeptide, enkephalins, somatostatin, gastrin/cholecystokinin, neurotensin and dopamine-β-hydroxylase. Neuroscience 5:689–744

    Google Scholar 

  • Schwartz CJ, Kimberg DV, Sheerin HE, Field M, Said SI (1974) Vasoactive intestinal peptide stimulation of adenylate cyclase and active electrolyte secretion in intestinal mucosa. J Clin Invest 54:536–544

    Google Scholar 

  • Sellin JH, de Soignie R (1985) Adrenergic regulation of ion transport in rabbit proximal colon. Gastroenterology 88:1580

    Google Scholar 

  • Silva DG, Ross G, Osborne LW (1971) Adrenergic innervation of the ileum of the cat. Am J Physiol 220:347–352

    Google Scholar 

  • Simon B, Kather H (1978) Activation of human adenylate cyclase in the upper gastrointestinal tract by vasoactive intestinal polypeptide. Gastroenterology 74:722–725

    Google Scholar 

  • Simon B, Czygan P, Spaan G, Dittrich J, Kather H (1978) Hormone sensitive adenylate cyclase in human colonic mucosa. Digestion 17:229–233

    Google Scholar 

  • Sjöqvist A, Cassuto J, Jodal M, Brunsson I, Lundgren O (1982) The effect on intestinal fluid transport of exposing the serosa to hydrochloric acid. A study of mechanisms. Acta Physiol Scand 116:447–454

    Google Scholar 

  • Sjövall H (1984a) Evidence for separate sympathetic regulation of fluid absorption and blood flow in the feline jejunum. Am J Physiol 247:G510–G514

    Google Scholar 

  • Sjövall H (1984b) Sympathetic control of jejunal fluid and electrolyte transport. An experimental study in cats and rats. Acta Physiol Scand 122 [Suppl 535]

    Google Scholar 

  • Sjövall H, Jodal M, Redfors S, Lundgren O (1982) The effect of carotid occlusion on the rate of net fluid absorption in the small intestine of rats and cats. Acta Physiol Scand 115:447–453

    Google Scholar 

  • Sjövall H, Brunsson I, Jodal M, Lundgren O (1983a) The effect of vagal nerve stimulation on net fluid transport in the small intestine of the cat. Acta Physiol Scand 117:351–357

    Google Scholar 

  • Sjövall H, Redfors S, Hallbäck D-A, Eklund S, Jodal M, Lundgren O (1983b) The effect of splanchnic nerve stimulation on blood flow distribution, villous tissue osmolality and fluid and electrolyte transport in the small intestine of the cat. Acta Physiol Scand 117:359–365

    Google Scholar 

  • Sjövall H, Redfors S, Jodal M, Lundgren O (1983c) On the mode of action of the sympathetic fibres on intestinal fluid transport: evidence for the existence of a glucose-stimulated secretory nervous pathway in the intestinal wall. Acta Physiol Scand 119:39–48

    Google Scholar 

  • Sjövall H, Jodal M, Lundgren O (1984a) Further evidence for a glucose-activated secretory mechanism in the jejunum of the cat. Acta Physiol Scand 120:437–443

    Google Scholar 

  • Sjövall H, Redfors S, Biber B, Martner J, Winsö O (1984b) Evidence for cardiac volume-receptor regulation of feline jejunal blood flow and fluid transport. Am J Physiol 246:G401–G410

    Google Scholar 

  • Smith PL, McCabe RD (1984) Effects of adrenergic agents on electrolyte transport by the rabbit descending colon. Fed Proc 43:1082

    Google Scholar 

  • Smith PL, McCabe RD (1986) Potassium secretion by rabbit descending colon: effects of adrenergic stimuli. Am J Physiol 250:G432–G439

    Google Scholar 

  • Stach W (1973) Ãœber die Nervengeflechte der Duodenalzotten. Licht-und electronenmikroskopische Untersuchungen. Acta Anat (Basel) 85:216–231

    Google Scholar 

  • Stach W (1979) Zur Innervation der Dünndarmschleimhaut von Laboratoriumstieren. II. Ultrastruktur der neurozellularen Beziehungen. Z Mikrosk Anat Forsch 93:1012–1024

    Google Scholar 

  • Stach W, Hung N (1979) Zur Innervation der Dünndarmschleimhaut von Laboratoriumstieren. I. Architektur, lichtmikroskopische Struktur und histochemische Differenzierung. Z Mikrosk Anat Forsch 93:976–987

    Google Scholar 

  • Stöhr P (1934) Mikroskopische Studien zur Innervation des Magen-Darmkanals. Z Zellforsch Mikrosk Anat 21:243–278

    Google Scholar 

  • Stöhr P (1952) Zusammenfassende Ergebnisse über die mikroskopische Innervation des Magendarmkanals. Ergebn Anat Entwick 34:250–401

    Google Scholar 

  • Sundler F, HÃ¥kanson R, Leander S (1980) Peptidergic nervous systems in the gut. Clin Gastroenterol 9:517–543

    Google Scholar 

  • Sundler F, HÃ¥kanson R, Leander S, Uddman R (1982) Neuropeptides in the gut wall: cellular and subcellular localization, topographic distribution and possible physiological significance. In: Chan-Palay V, Palay SL (eds) Cytochemical methods in neuroanatomy. Alan R Liss, New York, pp 341–356

    Google Scholar 

  • Sundler F, Moghimzadeh E, HÃ¥kanson R, Ekelund M, Emson P (1983) Nerve fibers in the gut and pancreas of the rat displaying neuropeptide-Y immunoreactivity. Intrinsic and extrinsic origin. Cell Tissue Res 230:487–493

    Google Scholar 

  • Surprenant A (1984a) Slow excitatory synaptic potentials recorded from neurones of guinea-pig submucous plexus. J Physiol (Lond) 351:343–361

    Google Scholar 

  • Surprenant A (1984b) Two types of neurones lacking synaptic input in the submucous plexus of guinea-pig small intestine. J Physiol (Lond) 351:363–378

    Google Scholar 

  • Taguchi T, Tanaka K, Ikeda K, Matsubayash S, Yanaihara N (1983) Peptidergic innervation irregularities in Hirschsprung's disease. Virchow's Arch [A] 401:223–235

    Google Scholar 

  • Tanaka T, Starke K (1979) Binding of 3H-clonidine to an α-adrenoceptor in membranes of guinea-pig ileum. Naunyn-Schmiedeberg's Arch Pharmacol 309:207–215

    Google Scholar 

  • Tange A (1983) Distribution of peptide-containing endocrine cells and neurons in the gastrointestinal tract of the dog: immunohistochemical studies using antisera to somatostatin, substance P, vasoactive intestinal polypeptide, met-enkephalin, and neurotensin. Biomed Res 4:9–24

    Google Scholar 

  • Tapper EJ (1983) Local modulation of intestinal ion transport by enteric neurons. Am J Physiol 244:456–468

    Google Scholar 

  • Tapper EJ, Lewand DL (1981) Actions of a nicotinic agonist, DMPP, on intestinal ion transport in vitro. Life Sci 28:155–162

    Google Scholar 

  • Tapper EJ, Powell DW, Morris SM (1978) Cholinergic-adrenergic interactions on intestinal ion transport. Am J Physiol 235:E402–E409

    Google Scholar 

  • Tapper EJ, Bloom AS, Lewand DL (1981) Endogenous norepinephrine release induced by tyramine modulates intestinal ion transport. Am J Physiol 241:G264–G269

    Google Scholar 

  • Taub M, Bonorris G, Chung A, Coyne MJ, Schoenfield LJ (1977) Effect of propranolol on bile acid-and cholera enterotoxin-stimulated cAMP and secretion in rabbit intestine. Gastroenterology 72:101–105

    Google Scholar 

  • Taylor IL, Vaillant CR (1983) Pancreatic polypeptide-like material in nerves and endocrine cells of the rat. Peptides 4:245–253

    Google Scholar 

  • Temesrékási D (1955) Die Synaptologie der Dünndarmgeflechte. Acta Morphol Acad Sci Hung 5:53–69

    Google Scholar 

  • Thomas EM, Templeton D (1981) Noradrenergic innervation of the villi of rat jejunum. J Auton Nerv Syst 3:25–29

    Google Scholar 

  • Tidball CS (1961) Active chloride transport during intestinal secretion. Am J Physiol 200:309–312

    Google Scholar 

  • Tidball CS, Tidball ME (1958) Changes in intestinal net absorption of a sodium chloride solution produced by atropine in normal and vagotomized dogs. Am J Physiol 193:25–28

    Google Scholar 

  • Tien X-Y, Wahawisan R, Wallace LJ, Gaginella TS (1985) Intestinal epithelial cells and musculature contain different muscarinic binding sites. Life Sci 36:1949–1955

    Google Scholar 

  • Trent DF, Weir GC (1981) Heterogeneity of somatostatin-like peptides in rat brain, pancreas, and gastrointestinal tract. Endocrinology 108:2033–2038

    Google Scholar 

  • Tsai BS, Conway RG, Bauer RF (1985) Identification and regulation of alpha2-adrenergic receptors in rabbit ileal mucosa. Biochem Pharmacol 34:3867–3873

    Google Scholar 

  • Tsuto T, Iwai N, Yanagihara J, Majima S, Ibata Y (1983) Immunohistochemical investigation of vasoactive intestinal polypeptide (VIP) and substance P in the colon in Hirschsprung's disease. Jpn J Ped Surg 19:13–20

    Google Scholar 

  • Turnberg LA, McKay J, Higgs N (1982) The role of opiates in the control of small intestinal transport. In: Case RM, Garner A, Turnberg LA, Young JA (eds) Electrolyte and water transport across gastrointestinal epithelia. Raven Press, New York, pp 287–294

    Google Scholar 

  • Udall JN, Singer DB, Huang CTL, Nichols BL, Ferry GD (1976) Watery diarrhea and hypokalemia associated with plasma vasoactive intestinal peptide in a child. J Pediat 89:819–821

    Google Scholar 

  • Ussing H, Zerahn K (1951) Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol Scand 23:110–127

    Google Scholar 

  • Valiulis E, Long JF (1973) Effects of drugs on intestinal water secretion following cholera toxin in guinea pigs and rabbits. Physiologist 16:475

    Google Scholar 

  • Vinayek R, Brown DR, Miller RJ (1983) Inhibition of the antisecretory effects of [D-Ala2, D-Leu5]enkephalin in the guinea-pig ileum by a selective delta opioid antagonist. Eur J Pharmacol 94:159–161

    Google Scholar 

  • Vinayek R, Brown DR, Miller RJ (1985) Tolerance and cross-tolerance to the antisecretory effects of enkephalins on the guinea-pig ileal mucosa. J Pharmacol Exp Ther 232:781–785

    Google Scholar 

  • Vincent SR, Dalsgaard C-J, Schultzberg M, Hökfelt T, Christenson I, Terenius L (1984) Dynorphin-immunoreactive neurons in the autonomic nervous system. Neuroscience 11:973–987

    Google Scholar 

  • Vinik AI, Gaginella TS, O'Dorisio TM, Shapiro B, Wagner L (1981) The distribution and characterization of somatostatin-like immunoreactivity in epithelial cells, submucosa, and muscle of the rat stomach and intestine. Endocrinology 109:1921–1926

    Google Scholar 

  • Waddell MC (1929a) A histological study of the enteric plexuses in the small intestine following degeneration of the extrinsic nerves. Anat Rec 42:65

    Google Scholar 

  • Waddell MC (1929b) Anatomical evidence for existence of enteric reflex arcs following degeneration of extrinsic nerves. Proc Soc Exp Biol Med 26:867–869

    Google Scholar 

  • Wade PR, Westfall JA (1985) Ultrastructure of enterochromaffin cells and associated neural and vascular elements in the mouse duodenum. Cell Tissue Res 241:557–563

    Google Scholar 

  • Waldman DB, Gardner JD, Zfass AM, Makhlouf GM (1977) Effects of vasoactive intestinal peptide, secretin and related peptides on rat colonic transport and adenylate cyclase activity. Gastroenterology 73:518–523

    Google Scholar 

  • Walling MW, Brasitus TA, Kimberg DV (1977) Effects of calcitonin and substance P on the transport of Ca, Na, and Cl across rat ileum in vitro. Gastroenterology 73:89–94

    Google Scholar 

  • Walter P (1956) Das morphologische Verhalten vegetativ-nervöser Elemente im Duodenum des Rindes. Acta Neurol 15:79–100

    Google Scholar 

  • Warhurst G, Smith G, Tonge A, Turnberg L (1983) Effects of morphine on net water absorption, mucosal adenylate cyclase activity and PGE2 metabolism in rat intestine. Eur J Pharmacol 86:77–82

    Google Scholar 

  • Warhurst G, Smith GS, Higgs N, Tonge A, Turnberg LA (1984) Influence of morphine tolerance and withdrawal on intestinal salt and water transport in the rat in vivo and in vitro. Gastroenterology 87:1035–1041

    Google Scholar 

  • Wright RD, Florey HW, Jennings MA (1938) The secretion of the colon of the cat. Q J Exp Physiol 28:207–229

    Google Scholar 

  • Wright RD, Jennings MA, Florey HW, Lium R (1940) The influence of nerves and drugs on secretion by the small intestine and an investigation of the enzymes in intestinal juice. Q J Exp Physiol 30:73–120

    Google Scholar 

  • Wu ZC, O'Dorisio TM, Cateland S, Mekhjian HS, Gaginella TS (1979) Effects of pancreatic polypeptide and vasoactive intestinal peptide on rat ileal and colonic water and electrolyte transport in vivo. Dig Dis Sci 24:625–630

    Google Scholar 

  • Yada T, Okada Y (1984) Electrical activity of an intestinal epithelial cell line: hyperpolarizing responses to intestinal secretagogues. J Membr Biol 77:33–44

    Google Scholar 

  • Yamaguchi K, Abe K, Miyakawa S, Ohnami S, Sakagami M, Yanaihara N (1980) The presence of macromolecular vasoactive intestinal polypeptide (VIP) in VIP-producing tumours. Gastroenterology 79:687–694

    Google Scholar 

  • Yanaihara C, Sakagami M, Michuzuki T, Sato H, Yanaihara N, Iwanaga T, Fujii S, Fujita T (1980) Immunoreactive VIP (vasoactive intestinal polypeptide) in canine intestinal mucosa and muscle. Biomed Res 1:449–455

    Google Scholar 

  • Yanaihara N, Nokihara K, Yanaihara C, Iwanaga T, Fujita T (1983) Immunocytochemical demonstration of PHI and its coexistence with VIP in intestinal nerves of the rat and pig. Arch Histol Jpn 46:575–581

    Google Scholar 

  • Zimmerman TW, Binder HJ (1982) Muscarinic receptors on rat isolated colonic epithelial cells: a correlation between inhibition of (3H)-quinuclidinyl benzilate binding and alteration in ion transport. Gastroenterology 83:1244–1251

    Google Scholar 

  • Zimmerman TW, Binder HJ (1983) Effect of tetrodotoxin on cholinergic agonist-mediated colonic electrolyte transport. Am J Physiol 244:G386–G391

    Google Scholar 

  • Zimmerman TW, Dobbins JW, Binder HJ (1982) Mechanism of cholinergic regulation of electrolyte transport in rat colon in vitro. Am J Physiol 242:G116–G123

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag

About this chapter

Cite this chapter

Keast, J.R. (1987). Mucosal innervation and control of water and ion transport in the intestine. In: Reviews of Physiology, Biochemistry and Pharmacology, Volume 109. Reviews of Physiology, Biochemistry and Pharmacology, vol 109. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0031024

Download citation

  • DOI: https://doi.org/10.1007/BFb0031024

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-18108-8

  • Online ISBN: 978-3-540-47780-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics