Skip to main content

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 104))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrahamsson S, Bergström S, Samuelsson B (1962) The absolute configuration of prostaglandin F2–1. Proc Chem Soc:332

    Google Scholar 

  • Adaikan PG, Lau LC, Tai MY, Karim SMM (1983) Inhibition of platelet aggregation with intravenous and oral administration of a carboprostacyclin analogue, 15-cyclopentyl-θ-pentanor-5(E)-carbacyclin (ONO 41483) in man. Prostaglandins Leukotrienes Med 10:53–64

    Google Scholar 

  • Adaikan PG, Karim SMM, Lau LC, Tai MY, Kottegoda SR (1984) Inhibition of platelet aggregation and antagonism of vasopressin-induced ECG changes in primates by a carboprostacyclin analogue, ZK 36374. Thromb Res 33:333–340

    Google Scholar 

  • Adams SS, Burrows CA, Skeldon N, Yates DB (1977) Inhibition of prostaglandin synthesis and leucocyte migration by flurbiprofen. Curr Med Res Opin 5:11–16

    Google Scholar 

  • Aehringhaus U, Wölbling RH, König W, Patrono C, Peskar BM, Peskar BA (1982) Release of leukotrience C4 from human polymorphonuclear leukocytes as determined by radioimmunoassay. FEBS Lett 146:111–114

    Google Scholar 

  • Aehringhaus U, Peskar BA, Wittenberg HR, Wölbling RH (1983) Effect of inhibition of synthesis and receptor antagonism of SRS-A in cardiac anaphylaxis. Br J Pharmacol 80:73–80

    Google Scholar 

  • Aehringhaus U, Dembinska-Kiéc A, Peskar BA (1984) Effects of exogenous prostaglandins on the release of leukotriene C4-like immunoreactivity and on coronary flow in indomethacin-treated anaphylactic guinea pig hearts. Naunyn-Schmiedebergs Arch Pharmacol 326:368–374

    Google Scholar 

  • Ahumada GG, Sobel BE, Needleman P (1980) Synthesis of prostaglandins by cultured rat heart myocytes and cardiac mesenchymal cells. J Mol Cell Cardiol 12:685–700

    Google Scholar 

  • Aiken JW, Shebuski RJ (1980) Comparison in anaesthetized dogs of the anti-aggregatory and hemodynamic effects of prostacyclin and a chemically stable prostacyclin analog, 6a-carba-PGI2 (carbacyclin). Prostaglandins 19:629–643

    Google Scholar 

  • Aiken JW, Gorman RR, Shebuski RJ (1979) Prevention of blockade of partially obstructed coronary arteries with prostacyclin correlates with inhibition of platelet aggregation. Prostaglandins 17:483–494

    Google Scholar 

  • Aiken JW, Shebuski RJ, Miller OV, Gorman RR (1981) Endogenous prostacyclin contributes to the efficacy of a thromboxane synthetase inhibitor for preventing coronary artery thrombosis. J Pharmacol Exp Ther 219:299–308

    Google Scholar 

  • Allan G, Levi R (1980) The cardiac effects of prostaglandins and their modification by the prostaglandin antagonist N-0164. J Pharmacol Exp Ther 214:45–49

    Google Scholar 

  • Allan G, Levi R (1981) Thromboxane and prostacyclin release during cardiac immediate hypersensitivity reactions in vitro. J Pharmacol Exp Ther 217:157–161

    Google Scholar 

  • Anderson WH, Mohammad SF, Chuang HYK, Mason RG (1980) Heparin potentiates synthesis of thromboxane A2 in human platelets. Adv Prostaglandin Thromboxane Res 6:287–291

    Google Scholar 

  • Änggård E, Larsson C, Samuelsson B (1971) The distribution of 15-hydroxyprostaglandin dehydrogenase and prostaglandin Δ13-reductase in tissues of the swine. Acta Physiol Scand 81:396–404

    Google Scholar 

  • Anhut H, Bernauer W, Peskar BA (1977) Radioimmunological determination of thromboxane release in cardiac anaphylaxis. Eur J Pharmacol 44:85–88

    Google Scholar 

  • Anhut H, Bernauer W, Peskar BA (1978a) Pharmacological modification of thromboxane and prostaglandin release in cardiac anaphylaxis. Prostaglandins 15:889–900

    Google Scholar 

  • Anhut H, Peskar BA, Bernauer W (1978b) Release of 15-keto-13,14-dihydro-thromboxane B2 and prostaglandin D2 during anaphylaxis as measured by radioimmunoassay. Naunyn-Schmiedebergs Arch Pharmacol 305:247–252

    Google Scholar 

  • Anturane Reinfarction Italian Study Group (1982) Sulphinpyrazone in post-myocardial infarction. Lancet 1:237–242

    Google Scholar 

  • Anturane Reinfarction Trial Research Group (1978) Sulfinpyrazone in the prevention of cardiac death after myocardial infarction. The anturane reinfarction trial. N Engl J Med 298:289–295

    Google Scholar 

  • Anturane Reinfarction Trial Research Group (1980) Sulfinpyrazone in the prevention of sudden death after myocardial infarction. N Engl J Med 302:250–256

    Google Scholar 

  • Armstrong JM, Chapple D, Dusting GJ, Hughes R, Moncada S, Vane JR (1977) Cardiovascular actions of prostacyclin (PGI2) in chloralose anaesthetized dogs. Br J Pharmacol 61:136P

    Google Scholar 

  • Arnoux B, Duval D, Benveniste J (1980) Release of platelet-activating factor (PAF-acether) from alveolar macrophages by the calcium ionophore A 23187 and phagocytosis. Eur J Clin Invest 10:437–441

    Google Scholar 

  • Aspirin Myocardial Infarction Study Research Group (1980) A randomized, controlled trial of aspirin in persons recovered from myocardial infarction. JAMA 243:661–669

    Google Scholar 

  • Auer J (1911) Lethal cardiac anaphylaxis in the rabbit. J Exp Med 14:476–496

    Google Scholar 

  • Auer J, Lewis PA (1910) The physiology of the immediate reaction of anaphylaxis in the guinea pig. J Exp Med 12:151–175

    Google Scholar 

  • Augstein J, Farmer JR, Lee TB, Sheard P, Tattersall ML (1973) Selective inhibition of slow reacting substance of anaphylaxis. Nature (New Biol) 245:215–217

    Google Scholar 

  • Austen K (1965) Systemic anaphylaxis in man. JAMA 12:116–118

    Google Scholar 

  • Austen K (1978) The anaphylactic syndrome. In: Samter M (ed) Immunological diseases, vol 2, 3rd edn. Little Brown, Boston, pp 885–899

    Google Scholar 

  • Bakhle YS (1983) Synthesis and catabolism of cyclo-oxygenase products. Br Med Bull 39:214–218

    Google Scholar 

  • Baraka A, Sfeir S (1980) Anaphylactic cardiac arrest in a parturient. JAMA 243:1745–1746

    Google Scholar 

  • Beitz J, Förster W (1980) Influence of human low density and high density lipoprotein cholesterol on the in vitro prostaglandin I2 synthetase activity. Biochim Biophys Acta 620:352–355

    Google Scholar 

  • Belch JJF, Greer I, McLaren M, Saniabadi AR, Miller S, Sturrock RD, Forbes CD (1984) The effects of intravenous ZK36-374, a stable prostacyclin analogue, on human volunteers. Prostaglandins 28:67–77

    Google Scholar 

  • Benveniste J (1974) Platelet-activating factor, a new mediator of anaphylaxis and immune complex deposition from rabbit and human basophils. Nature 249:581–582

    Google Scholar 

  • Benveniste J, Henson PM, Cochrane CG (1972) Leukocyte-dependent histamine release from rabbit platelets: the role of IgE, basophils and a platelet-activating factor. J Exp Med 136:1356–1377

    Google Scholar 

  • Benveniste J, Le Couedic JP, Kamoun P (1975) Aggregation of human platelets by platelet-activating factor. Lancet 1:344–345

    Google Scholar 

  • Benveniste J, Le Couedic JP, Polonsky J, Tence M (1977) Structural analysis of purified platelet-activating factor by lipases. Nature 269:170–171

    Google Scholar 

  • Benveniste J, Boullet C, Brink C, Labat C (1983) The actions of Paf-acether (platelet-activating factor) on guinea-pig isolated heart preparations. Br J Pharmacol 80:81–83

    Google Scholar 

  • Berger HJ, Zaret BL, Speroff L, Cohen LS, Wolfson S (1976) Regional cardiac prostaglandin release during myocardial ischemia in anaesthetized dogs. Circ Res 38:566–571

    Google Scholar 

  • Bergman G, Daly K, Atkinson L, Rothman M, Richardson PJ, Jackson G, Jewitt DE (1981) Prostacyclin: haemodynamic and metabolic effects in patients with coronary artery disease. Lancet 1:569–572

    Google Scholar 

  • Bergström S, Sjövall J (1960a) The isolation of prostaglandin F from sheep prostate glands. Acta Chem Scand 14:1693–1700

    Google Scholar 

  • Bergström S, Sjövall J (1960b) The isolation of prostaglandin E from sheep prostate glands. Acta Chem Scand 14:1701:1705

    Google Scholar 

  • Bergström S, Ryhage R, Samuelsson B, Sjövall J (1963) Prostaglandins and related factors. The structure of prostaglandin E1, F and F. J Biol Chem 238:3555–3564

    Google Scholar 

  • Bergström S, Danielsson H, Samuelsson B (1964) The enzymatic formation of prostaglandin E2 from arachidonic acid. Biochim Biophys Acta 90:207–210

    Google Scholar 

  • Bergström S, Carlson LA, Weeks JR (1968) The prostaglandins: a family of biologically active lipids. Phrmacol Rev 20:1–48

    Google Scholar 

  • Bernreiter M (1959) Electrocardiogram of patient in anaphylactic shock. JAMA 170:1628–1630

    Google Scholar 

  • Bessin P, Bonnet J, Apffel D, Soulard C, Desgroux L, Pelas I, Benveniste J (1983) Acute circulatory collapse caused by platelet-activating factor (PAF-acether) in dogs. Eur J Pharmacol 86:403–413

    Google Scholar 

  • Best LC, Martin TJ, Russell RGG, Preston FE (1977) Prostacyclin increases cyclic AMP levels and adenylate cyclase activity in platelets. Nature 267:850–852

    Google Scholar 

  • Binder MJ, Gunderson HJ, Cannon J, Rosove L (1950) Electrocardiographic changes associated with allergic reactions to penicillin. Am Heart J 40:940–944

    Google Scholar 

  • Björk J, Hedqvist P, Arfors KE (1982) Increase in vascular permeability induced by leukotriene B4 and the role of polymorphonuclear leukocytes. Inflammation 6:189–200

    Google Scholar 

  • Blackwell GJ, Flower RJ (1983) Inhibition of phospholipase. Br Med Bull 39:260–264

    Google Scholar 

  • Blackwell GJ, Flower RJ, Russell-Smith N, Salmon JA, Thorogood PB, Vane JR (1978) Prostacyclin is produced in whole blood. Br J Pharmacol 64:436P

    Google Scholar 

  • Blackwell GJ, Carnuccio R, DiRosa M, Flower RJ, Parente L, Persico P (1980) Macrocortin: a polypeptide causing the anti-phospholipase effect of glucocorticoids. Nature 287:147–149

    Google Scholar 

  • Blaskó G, Berentey E, Harsányi A, Sas G (1983) Intracoronarily administered prostacyclin and streptokinase for treatment of myocardial infarction. Adv Prostaglandin Thromboxane Leukotrienes Res 11:385–390

    Google Scholar 

  • Block AJ, Feinberg H, Herbacynska-Cedro K, Vane JR (1975) Anoxia-induced release of prostaglandins in rabbit isolated hearts. Circ Res 36:34–42

    Google Scholar 

  • Bolli R, Goldstein RE, Davenport N, Epstein SE (1981) Influence of sulfinpyrazone and naproxen on infarct size in the dog. Am J Cardiol 47:841–847

    Google Scholar 

  • Bolton HS, Chanderbhan R, Bryant RW, Bailey JM, Weglicki WB, Vahouny GV (1980) Prostaglandin synthesis by adult heart myocytes. J Mol Cell Cardiol 12:1287–1298

    Google Scholar 

  • Bonow RO, Lipson LC, Sheehan FH, Capurro NL, Isner JM, Roberts WC, Goldstein RE, Epstein SE (1981) Lack of effect of aspirin on myocardial infarct size in the dog. Am J Cardiol 47:258–264

    Google Scholar 

  • Booth BH, Patterson R (1970) Electrocardiographic changes during human anaphylaxis. JAMA 211:627–631

    Google Scholar 

  • Borgeat P, Samuelsson B (1979a) Arachidonic acid metabolism in polymorphonuclear leukocytes: Effects of ionophore A23187. Proc Natl Acad Sci USA 76:2148–2152

    Google Scholar 

  • Borgeat P, Samuelsson B (1979b) Metabolism of arachidonic acid in polymorphonuclear leukocytes: structure analysis of novel hydroxylated compounds. J Biol Chem 254:7865–7869

    Google Scholar 

  • Borgeat P, Hamberg M, Samuelsson B (1976) Transformation of arachidonic acid and homo-γ-linolenic acid by rabbit polymorphonuclear leukocytes. Monohydroxy acids from novel lipoxygenase. J Biol Chem 251:7816–7820

    Google Scholar 

  • Born GV (1962) Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature 194:927–929

    Google Scholar 

  • Boston Collaborative Drug Surveillance Group (1974) Regular aspirin intake and acute myocardial infarction. Br Med J 1:440–443

    Google Scholar 

  • Boyd LM, Ezra D, Feuerstein G, Goldstein RE (1983) Effects of FPL-55712 or indomethacin on leukotriene-induced coronary constriction in the intact pig heart. Eur J Pharmacol 89:307–311

    Google Scholar 

  • Breddin K, Loew D, Lechner K, Überla K, Walter E (1979) Secondary prevention of myocardial infarction. Comparison of acetylsalicylic acid, phenprocoumon and placebo. A multicenter two-year prospective study. Thromb Haemost 41:225–236

    Google Scholar 

  • Bristow MR, Ginsburg R, Kantrowitz NE, Baim DS, Rosenbaum JT (1982) Coronary spasm associated with urticaria: Report of a case mimicking anaphylaxis. Clin Cardiol (Lond) 5:238–240

    Google Scholar 

  • Brocklehurst WE (1953) Occurrence of an unidentified substance during anaphylaxic shock in cavy lung. J Physiol 120:16P–17P

    Google Scholar 

  • Brocklehurst WE (1960) The release of histamine and formation of a slow-reacting substance (SRS-A) during anaphylactic shock. J Physiol 151:416–435

    Google Scholar 

  • Brox JH, Nordøy A (1983) The effect of polyunsaturated fatty acids on endothelial cells and their production of prostacyclin, thromboxane and platelet inhibitory activity. Thromb Haemost 50:762–767

    Google Scholar 

  • Brox JH, Killie JE, Gunnes S, Nordøy A (1981) The effect of cod liver oil and corn oil on platelets and vessel wall in man. Thromb Haemost 46:606–611

    Google Scholar 

  • Bulkley BH, Roberts WC (1974) Steroid therapy during acute myocardial infarction: A case of delayed healing and ventricular aneurysm. Am J Med 56:244–250

    Google Scholar 

  • Bunting S, Gryglewski R, Moncada S, Vane JR (1976) Arterial walls generate from prostaglandin endoperoxides a substance (prostaglandin X) which relaxes strips of mesenteric and coeliac arteries and inhibits platelet aggregation. Prostaglandins 12:897–913

    Google Scholar 

  • Bunting S, Moncada S, Vane JR (1983) The prostacyclin-thromboxane A2 balance: pathophysiological and therapeutic implications. Br Med Bull 39:271–276

    Google Scholar 

  • Burke JA, Levi R (1980) Slow reacting substance of anaphylaxis (SRS-A): Direct and indirect cardiac effects. Fed Proc 39:389

    Google Scholar 

  • Burke JA, Levi R, Corey EJ (1981) Cardiovascular effects of pure synthetic leukotrienes C and D. Fed Proc 40:1015

    Google Scholar 

  • Burke JA, Levi R, Guo ZG, Corey EJ (1982a) Leukotriene C4, D4 and E4: Effects on human and guinea-pig cardiac preparations in vitro. J Pharmacol Exp Ther 221:235–241

    Google Scholar 

  • Burke JA, Levi R, Hanahan DJ, Pinckard RN (1982b) Cardiac effects of acethyl glyceryl ether phosphorylcholine. Fed Proc 41:823

    Google Scholar 

  • Burke SE, DiCola G, Lefer AM (1983a) Protection of ischemic cat myocardium by CGS-13080, a selective potent thromboxane A2 synthesis inhibitor. J Cardiovasc Pharmacol 5:842–847

    Google Scholar 

  • Burke SE, Lefer AM, Nicolaou KC, Smith GM, Smith JB (1983b) Reponsiveness of platelets and coronary arteries from different species to synthetic thromboxane and prostaglandin endoperoxide analogs. Br J Pharmacol 78:287–292

    Google Scholar 

  • Bush LR, Campbell WB, Buja LM, Tilton GD, Willerson JT (1984) Effects of the selective thromboxane synthetase inhibitor dazoxiben on variation in cyclic blood flow in stenosed canine coronary arteries. Circulation 69:1161–1170

    Google Scholar 

  • Butkus A, Skrinska VA, Schumacher OP (1980) Thromboxane production and platelet aggregation in diabetic subjects with clinical complications. Thromb Res 19:211–223

    Google Scholar 

  • Camussi G, Montrucchio G, Alloatti G, Mariano F, Coda R, Tetta C, Emanuelli G (1984) Platelet-dependent and independent cardiovascular effects of platelet-activating factor (PAF) (Abstr). In: Neri Serneri GG, Masotti G, Gensini GF (eds) Platelets prostaglandins and the cardiovascular system. Boehringer, Ingelheim, Florence, p 160

    Google Scholar 

  • Capurro N, Levi R (1975) The heart as a target organ in systemic allergic reactions. Comparison of cardiac anaphylaxis in vivo and in vitro. Circ Res 36:520–528

    Google Scholar 

  • Carter AJ, Bevan JA, Hanley SP, Morgan WE, Turner DR (1984) A comparison of human pulmonary arterial and venous prostacyclin and thromboxane synthesis — effect of a thromboxane synthetase inhibitor. Thromb Haemost 51:257–260

    Google Scholar 

  • Carvalho ACA, Colman RW, Lees RS (1974) Platelet function in hyperlipoproteinemia. N Engl J Med 290:434–438

    Google Scholar 

  • Casals-Stenzel J, Buse M, Losert W (1983) Comparison of the vasodepressor action of ZK 36374, a stable prostaglandin derivative, PGI2 and PGE1, with their effect on platelet aggregation and bleeding time in rats. Prostaglandins Leukotrienes Med 10:197–212

    Google Scholar 

  • Cazenave JP, Benveniste J, Mustard JF (1979) Aggregation of rabbit platelets by platelet-activating factor is independent of the release reaction and the arachidonate pathway and inhibited by membrane active drugs. Lab Invest 41:275–285

    Google Scholar 

  • Cerletti C, Rajtar G, Bertelé V, de Gaetano G (1984) Inhibition of arachidonate-induced human platelet aggregation by a single low oral dose of aspirin in combination with a thromboxane synthetase inhibitor. Thromb Haemost 52:215

    Google Scholar 

  • Chakravarty N (1960a) The mechanism of histamine release in anaphylactic reaction in guinea pig and rat. Acta Physiol Scand 48:146–166

    Google Scholar 

  • Chakravarty N (1960b) The occurrence of a lipid-soluble smooth muscle-stimulating principle (“SRS”) in anaphylactic reaction. Acta Physiol Scand 48:167–177

    Google Scholar 

  • Chapple DJ, Dusting GJ, Hughes R, Vane JR (1978) A vagal reflex contributes to the hypotensive effect of prostacyclin in anaesthetized dogs. J Physiol (Lond) 281:43P–44P

    Google Scholar 

  • Chapple DJ, Dusting GJ, Hughes R, Vane JR (1980) Some direct and reflex cardiovascular actions of prostacyclin (PGI2) and prostaglandin E2 in anaesthetized dogs. Br J Pharmacol 68:437–447

    Google Scholar 

  • Chiabrando C, Castagnoli MN, Noseda A, Fanelli R, Rajtar G, Cerletti C, de Gaetano G (1984) Comparison of radioimmunoassay and high-resolution gas chromatography mass spectrometry for the quantitative determination of serum thromboxane B2 and 6-keto-PGF1α after pharmacological blockade of thromboxane synthetase. Prostaglandins Leukotrienes Med 16:79–88

    Google Scholar 

  • Chiavarelli M, Moncada S, Mullane KM (1982) Prostacyclin can either increase or decrease heart rate depending on the basal state. Br J Pharmacol 75:243–249

    Google Scholar 

  • Chien KR, Han A, Sen A, Buja LM, Willerson JT (1984) Accumulation of unesterified arachidonic acid in ischemic canine myocardium. Relationship to a phosphatidylcholine deacylation — reacylation cycle and the depletion of membrane phospholipids. Circ Res 54:313–322

    Google Scholar 

  • Chierchia S, Patrono C, Crea F, Ciabattoni G, De Caterina R, Cinotti GA, Distante A, Maseri A (1982) Effects of intravenous prostacyclin in variant angina. Circulation 65:470–477

    Google Scholar 

  • Chignard M, Le Couedic JP, Tence M, Vargaftig BB, Benveniste J (1970) The role of platelet-activating factor in platelet aggregation. Nature 279:799–800

    Google Scholar 

  • Christ-Hazelhof E, Nugteren DH, Van Dorp DA (1976) Conversion of prostaglandin endoperoxides by glutathione-s-transferases and serum albumins. Biochim Biophys Acta 450:450–461

    Google Scholar 

  • Christofinis GJ, Moncada S, Bunting S, Vane JR (1979) Prostacyclin release of rabbit aorta and human umbilical vein endothelial cells after prolonged subculture. In: Vane JR, Bergström S (eds) Prostacyclin. Raven, New York, pp 77–84

    Google Scholar 

  • Coker SJ, Parrat JR, Ledingham I McA, Zeitlin IJ (1981) Early release of thromboxane and 6-keto-PGF1α from the ischemic canine myocardium; relation to early post-infarction arrhythmias. Nature 291:323–324

    Google Scholar 

  • Colli S, Lombroso M, Maderna P, Tremoli E, Nicosia S (1983) Effects of PGI2 on platelet aggregation and adenylate cyclase activity in human type IIA hypercholesterolemia. Biochem Pharmacol 32:1989–1993

    Google Scholar 

  • Coombs RRA, Gell PGH (1968) Classification of allergic reactions responsible for clinical hypersensitivity and disease. In: Gell PGH, Coombs RRA (eds) Clinical aspects of immunology, 2nd edn. Blackwell, Oxford, pp 575–596

    Google Scholar 

  • Corey EJ, Niwa N, Falck JR, Mioskowski C, Arai Y, Marfat A (1980) Recent studies on the chemical synthesis of eicosanoids. Adv Prostaglandin Thromboxane Res 6:19–25

    Google Scholar 

  • Coronary Drug Project Research Group (1976) Aspirin in coronary heart disease. J Chron Dis 29:625–642

    Google Scholar 

  • Cortellaro M, Boschetti C, Antoniazzi V, Moreo G, Repetto S, Verna E, Boscarini M, Limido A, Binaghi G, Polli EE (1983) Transcoronary platelet thromboxane A2 formation without platelet trapping in patients with coronary stenosis — effect of sulphinpyrazone treatment. Thromb Haemost 50:857–859

    Google Scholar 

  • Criep LH (1931) Electrocardiographic studies of the effect of anaphylaxis in the cardiac mechanism. Arch Intern Med 48:1098–1109

    Google Scholar 

  • Criep LH, Woehler TR (1971) The heart in human anaphylaxis. Ann Allergy 29:399–409

    Google Scholar 

  • Culp BR, Lands WEM, Lucchesi BR, Pitt B, Romson J (1980) The effect of dietary supplementation of fish oil on experimental myocardial infarction. Prostaglandins 20:1021–1030

    Google Scholar 

  • Dahlén SE, Björk J, Hedqvist P, Arfors KE, Hammarström S, Lindgren JA, Samuelsson B (1981) Leukotrienes promote plasma leakage and leukocyte adhesion in post-capillary venules: In vivo effects with relevance to the acute inflammatory response. Proc Natl Acad Sci USA 78:3887–3891

    Google Scholar 

  • Dale J, Thaulow E, Myhre E, Parry J (1983) The effect of a thromboxane synthetase inhibitor dazoxiben and acetylsalicylic acid on platelet function and prostaglandin metabolism. Thromb Haemost 50:703–706

    Google Scholar 

  • D'Angelo V, Villa S, Mysliwiec M, Donati MB, de Gaetano B (1978) Defective fibrinolytic and prostacyclin-like activity in human atheromatous plaques. Thromb Haemost 39:535–536

    Google Scholar 

  • Darsee JR, Kloner RA, Braunwald E (1981) Demonstration of lateral and epicardial border zone salvage by flurbiprofen using an in vivo method for assessing myocardium at risk. Circulation 63:29–35

    Google Scholar 

  • Davi G, Custro N, Novo S, Mattina S, Strano A (1983) The effect of two low doses of aspririn on whole blood thromboxane and prostacyclin generation in healthy subjects. Thromb Haemost 50:669–670

    Google Scholar 

  • Davies RA, Thakur ML, Berger HJ, Wackers PJTH, Gottschalk A, Zaret BL (1981) Imaging the inflammatory response to acute myocardial infarction in man using indium-111-labeled autologous platelets. Circulation 63:826–832

    Google Scholar 

  • Davis K, Ginsburg R, Bristow M, Harrison DC (1980) Biphasic action of prostacyclin in the human coronary artery. Clin Res 28:3A

    Google Scholar 

  • Dawson W, Boot JR, Cockerill AF, Mallen DNB, Osborne DJ (1976) Release of novel prostaglandins and thromboxanes after immunological challenge of guinea-pig lung. Nature 262:699–702

    Google Scholar 

  • De Deckere EAM (1979) Effects of prostaglandins on coronary flow rate and left ventricular work in isolated rat heart. Eur J Pharmacol 58:211–213

    Google Scholar 

  • De Deckere EAM, Nugteren DH, Ten Hoor F (1977) Prostacyclin is the major prostaglandin released from the isolated perfused rabbit and rat heart. Nature 268:160–163

    Google Scholar 

  • Dembinska-Kiéc A, Gryglewska T, Zmuda A, Gryglewski RJ (1977) The generation of prostacyclin by arteries and by the coronary vascular bed is reduced in experimental atherosclerosis in rabbits. Prostaglandins 14:1025–1034

    Google Scholar 

  • Dembinska-Kieć A, Rücker W, Schönhöfer PS (1979) PGI2 enhanced cAMP content in bovine coronary arteries in the presence of isobutylmethylxanthine. Naunyn Schmiedebergs Arch Pharmacol 308:107–110

    Google Scholar 

  • De Mello VR, Roberts R, Sobel BE (1975) Deleterious effects of methylprednisolone in patients with evolving myocardial infarction. Clin Res 23:179A

    Google Scholar 

  • Dreyfuss F, Zahavi J (1973) Adenosine diphosphate induced platelet aggregation in myocardial infarction and ischemic heart disease. Atherosclerosis 17:107–120

    Google Scholar 

  • Dusting GJ, Angus JA (1984) Interaction of epoprostenol (PGI2) with vasoconstrictors on diameter of large coronary arteries of the dog. J Cardiovasc Pharmacol 6:20–27

    Google Scholar 

  • Dusting GJ, Moncada S, Vane JR (1977a) Prostacyclin is a weak contractor of coronary arteries of the pig. Eur J Pharmacol 45:301–304

    Google Scholar 

  • Dusting GJ, Moncada S, Vane JR (1977b) Prostacyclin (PGX) is the endogenous metabolite responsible for relaxation of coronary arteries induced by arachidonic acid. Prostaglandins 13:3–15

    Google Scholar 

  • Dusting GJ, Chapple DJ, Hughes R, Moncada S, Vane JR (1978) Prostacyclin (PGI2) induces coronary vasodilatation in anaesthetized dogs. Cardiovasc Res 12:720–730

    Google Scholar 

  • Dyerberg J, Bang HO (1979) Haemostatic function and platelet polyunsaturated fatty acids in Eskimos. Lancet 2:433–435

    Google Scholar 

  • Dyerberg J, Jørgensen KA (1980) The effect of arachidonic-and eicosapentaenoic acid on the synthesis of prostacyclin-like material in human umbilical vasculature. Artery 8:12–17

    Google Scholar 

  • Dyerberg J, Bang HO, Hjørne N (1975) Fatty acid composition of the plasma lipids in Greenland Eskimos. Am J Clin Nutr 28:958–966

    Google Scholar 

  • Dyerberg J, Bang HO, Stoffersen E, Moncada S, Vane JR (1978) Eicosapentaenoic acid and prevention of thrombosis and atherosclerosis. Lancet 2:117–119

    Google Scholar 

  • Dyerberg J, Jørgensen KA, Arnfred T (1981) Human umbilical blood vessel converts all cis-5,8-11,14,17 eicosapentaenoic acid to prostaglandin I3. Prostaglandins 22:857–862

    Google Scholar 

  • Editorial (1980) Aspirin after myocardial infarction. Lancet 1:1172–1173

    Google Scholar 

  • Edlund A, Berglund B, Kaijser L, Patrono C, Sollevi A, van Dorne D, Wennmalm A (1983) Release of adenosine and prostacyclin from ischemic human hearts. Adv Prostaglandin Thromboxane Leukotriene Res 11:365–370

    Google Scholar 

  • Edmonds LC, Lefer AM (1984) Protective actions of a new thromboxane synthetase inhibitor in arachidonate induced sudden death. Life Sci 35:1763–1768

    Google Scholar 

  • Egan RW, Paxton J, Kuehl FA Jr (1976) Mechanism of irreversible self-deactivation of prostaglandin synthetase. J Biol Chem 251:7329–7335

    Google Scholar 

  • Ellis EF, Oelz O, Roberts LJ II, Payne NA, Sweetman BJ, Nies AS, Oates JA (1976) Coronary arterial smooth muscle contraction by a substance released from platelets: Evidence that it is thromboxane A2. Science 193:1135–1137

    Google Scholar 

  • Elwood PC, Sweetnam PM (1979) Aspirin and secondary mortality after myocardial infarction. Lancet 2:1313–1317

    Google Scholar 

  • Elwood PC, Cochrane AL, Burr ML, Sweetnam PM, Williams G, Welsby E, Hughes SJ, Renton R (1974) A randomized controlled trial of acetyl salicylic acid in the secondary prevention of mortality from myocardial infarction. Br Med J 1:436–440

    Google Scholar 

  • EPSIM Research Group (1982) A controlled comparison of aspirin and oral anticoagulants in prevention of death after myocardial infarction. N Engl J Med 307:701–708

    Google Scholar 

  • Ertl G, Fiedler V, Abram TS, Kochsiek K (1984) Coronary effects of leukotriene C4 and D4 at normal and reduced coronary perfusion (Abstr). 2nd International Symposium on Prostaglandins in the Cardiovascular System, Nürnberg-Fürth, May 9–11

    Google Scholar 

  • Ezeamuzie IC, Assem ESK (1983) Effects of leukotrienes C4 and D4 on guinea-pig heart and the participation of SRS-A in the manifestation of guinea-pig cardiac anaphylaxis. Agents Actions 13:182–187

    Google Scholar 

  • Feigen GA, Prager DJ (1969) Experimental cardiac anaphylaxis. Physiologic, pharmacologic and biochemical aspects of immune reactions in the isolated heart. Am J Cardiol 24:474–491

    Google Scholar 

  • Feigen GA, Vaughan Williams EM, Peterson JK, Nielsen CB (1960) Histamine release and intracellular potentials during anaphylaxis in the isolated heart. Circ Res 8:713–723

    Google Scholar 

  • Feldberg W, Kellaway CH (1938) Liberation of histamine and formation of lysocithinlike substances by cobra venom. J Physiol (Lond) 94:187–226

    Google Scholar 

  • Ferreira SH, Moncada S, Vane JR (1971) Indomethacin and aspirin abolish prostaglandin release from the spleen Nature (New Biol) 231:237–239

    Google Scholar 

  • Fésüs L, Csaba B, Muszbek L (1977) Platelet-activating factor, the trigger of hemostatic alterations in rat anaphylaxis. Clin Exp Immunol 27:512–515

    Google Scholar 

  • Feuerstein G, Ezra D, Hayes E, Ramwell PW, Goldstein RE (1984a) Effects of platelet activating factor on coronary circulation, cardiac function and coronary vein level of 6-keto-PGF1α , TXB2 and leukotriene C4-like immunoreactivity of the intact domestic pig heart (Abstr). In: Neri Serneri GG, Masotti G, Gensini GF (eds) Platelets prostaglandins and the cardiovascular system. Boehringer-Ingelheim, Florence, p 159

    Google Scholar 

  • Feuerstein G, Boyd LM, Ezra D, Goldstein RE (1984b) Effect of platelet-activating factor on coronary circulation of the domestic pig. Am J Physiol 246:466–471

    Google Scholar 

  • Feuerstein N, Ramwell PW (1981) OKY-1581, a potential selective thromboxane synthetase inhibitor. Eur J Pharmacol 69:533–534

    Google Scholar 

  • Fiedler VB (1983) Reduction of myocardial infarction and dysrhythmic activity by nafazatrom in the conscious rat. Eur J Pharmacol 88:263–267

    Google Scholar 

  • Fiedler VB (1984) Reduction of acute myocardial ischemia in rabbit hearts by nafazatrom. J Cardiovasc Pharmacol 6:318–324

    Google Scholar 

  • Fiedler VB, Mardin M, Abram TS (1984) Nifedipine on cardiovascular leukotriene D4 actions in the anaesthetized dog. Eur J Pharmacol 104:159–164

    Google Scholar 

  • Fischer S, Weber PC (1983) Thromboxane A3 (TXA3) is formed in human platelets after dietary eicosapentaenoic acid (C20:5ω3). Biochem Biophys Res Commun 116:1091–1099

    Google Scholar 

  • Fischer S, Weber PC (1984) Prostaglandin I3 is formed in vivo in man after dietary eicosapentaenoic acid. Nature 307:165–168

    Google Scholar 

  • Fischer S, Struppler M, Böhlig B, Bernutz C, Weber W, Weber PC (1983) The influence of selective thromboxane synthetase inhibition with a novel imidazole derivative, UK-38 485, on prostanoid formation in man. Circulation 68:821–826

    Google Scholar 

  • Fishbein MC, Maclean D, Maroko PR (1978) The histopathologic evaluation of myocardial infarction. Chest 73:843–849

    Google Scholar 

  • FitzGerald DJ, Roy L, Robertson RM, FitzGerald GA (1984) The effect of organic nitrates on prostacyclin biosynthesis and platelet function in humans. Circulation 70:297–302

    Google Scholar 

  • FitzGerald GA, Oates JA (1984) Selective and nonselective inhibition of thromboxane formation. Clin Pharmacol Ther 35:633–640

    Google Scholar 

  • FitzGerald GA, Sherry S (1982) Pharmacology and pharmacokinetics of plateletactive drugs under current clinical investigation. In: Oates JA (ed) Prostaglandins and the cardiovascular system. Raven, New York, pp 107–172

    Google Scholar 

  • FitzGerald GA, Friedman LA, Miyamori I, Grady JO, Lewis PJ (1979) A double blind placebo controlled crossover study of prostacyclin in man. Life Sci 25:665–672

    Google Scholar 

  • FitzGerald GA, Oates JA, Hawiger J, Maas RL, Roberts LJ, Lawson JA, Brash AR (1983a) Endogenous biosynthesis of prostacyclin and thromboxane and platelet function during chronic administration of aspirin in man. J Clin Invest 71:676–688

    Google Scholar 

  • FitzGerald GA, Pedersen AK, Patrono C (1983b) Analysis of prostacyclin and thromboxane biosynthesis in cardiovascular disease. Circulation 67:1174–1177

    Google Scholar 

  • FitzGerald GA, Smith B, Pedersen AK, Brash AR (1984) Increased prostacyclin biosynthesis in patients with severe atherosclerosis and platelet activation. N Engl J Med 310:1065–1068

    Google Scholar 

  • Fitzpatrick FA, Gorman RR (1978) A comparison of imidazole and 9,11-azoprosta-5,13-dienoic acid; two selective thromboxane synthetase inhibitors. Biochim Biophys Acta 539:162–173

    Google Scholar 

  • Flower RJ (1974) Drugs which inhibit prostaglandin biosynthesis. Phrarmacol Rev 26:33–67

    Google Scholar 

  • Flower RJ, Blackwell GJ (1976) The importance of phospholipase A2 in prostaglandin biosynthesis. Biochem Pharmacol 25:285–291

    Google Scholar 

  • Ford-Hutchinson AW, Bray MA, Doig MV, Shipley ME, Smith MJH (1980) Leukotriene B, a potent chemokinetic and aggregating substance released from polymorphonuclear leukocytes. Nature 286:264–265

    Google Scholar 

  • Foster RF, Layman JD (1952) Generalized urticaria with electrocardiographic changes simulating myocardial infarction. JAMA 148:203–205

    Google Scholar 

  • Friedman PL, Brown EJ, Gunther S, Alexander RW, Barry WH, Mudge GH Jr, Grossman W (1981) Coronary vasoconstrictor effect of indomethacin in patients with coronary-artery disease. N Engl J Med 305:1171–1175

    Google Scholar 

  • Ganz P, Gaspar J, Colucci WS, Barry WH, Mudge GH, Alexander RW (1984) Effects of prostacyclin on coronary hemodynamics at rest and in response to cold pressor testing in patients with angina pectoris. Am J Cardiol 53:1500–1504

    Google Scholar 

  • Gerrard JM, Stuart MJ, Rao GHR, Steffes MW, Mauer SM, Brown DM, White JG (1980) Alteration in the balance of prostaglandin and thromboxane synthesis in diabetic rats. J Lab Clin Med 95:950–958

    Google Scholar 

  • Ginsburg R, Bristow MR, Harrison DC, Stinson EB (1980) Studies with isolated human coronary arteries. Some general observations, potential mediators of spasm, role of calcium antagonists. Chest 78:180–186

    Google Scholar 

  • Giotti A, Guidotti A, Mannaioni PF, Zilletti L (1966) The influence of adrenotropic drugs and noradrenaline on the histamine release in cardiac anaphylaxis in vitro. J Physiol (Lond) 184:924–941

    Google Scholar 

  • Goetzl EJ, Pickett WC (1980) The human PMN leukocyte chemotactic activity of complex hydroxyeicosatetraenoic acids (HETEs). J Immunol 125:1789–1791

    Google Scholar 

  • Goldblatt MW (1935) Properties of human seminal plasma. J Physiol (Lond) 84:208–218

    Google Scholar 

  • Gorman RR, Bunting S, Miller OV (1977a) Modulation of human platelet adenylate cyclase by prostacyclin (PGX). Prostaglandins 13:377–388

    Google Scholar 

  • Gorman RR, Fitzpatrick FA, Miller OV (1977b) A selective thromboxane synthetase inhibitor blocks the cAMP lowering activity of PGH2. Biochem Biophys Res Commun 79:305–313

    Google Scholar 

  • Gorman RR, Johnson RA, Spilman CH, Aiken JW (1983) Inhibition of platelet thromboxane A2 synthase activity by sodium 5-(3′-pyridinyl methyl)benzofuran-2-carboxylate. Prostaglandins 26:325–342

    Google Scholar 

  • Green LH, Seroppian E, Handin RI (1980) Platelet activation during exercise-induced myocardial ischemia. N Engl J Med 302:193–197

    Google Scholar 

  • Greenwald JE, Bianchine JR, Wong LK (1979) The production of the arachidonate metabolite HETE in vascular tissue. Nature 281:588–589

    Google Scholar 

  • Gryglewski RJ (1976) Steroid hormones, anti-inflammatory steroids and prostaglandins. Pharmacol Res Commun 8:337–348

    Google Scholar 

  • Gryglewski R, Vane JR (1972) The release of prostaglandins and rabbit aorta contracting substance (RCS) from rabbit spleen and its antagonism by anti-inflammatory drugs. Br J Pharmacol 45:37–47

    Google Scholar 

  • Gryglewski RJ, Bunting S, Moncada S, Flower RJ, Vane JR (1976) Arterial walls are protected against deposition of platelet thrombi by a substance (Prostaglandin X) which they make from prostaglandin endoperoxides. Prostaglandins 12:685–713

    Google Scholar 

  • Gryglewski RJ, Korbut R, Ocetkiewicz A (1978) Generation of prostacyclin by lungs in vivo and its release into the arterial circulation. Nature 273:765–767

    Google Scholar 

  • Gryglewski RJ, Salmon JA, Ubatuba FB, Weatherly BC, Moncada S, Vane JR (1979) Effects of all cis-5,8,11,14,17 eicosapentaenoic acid and PGH3 on platelet aggregation. Prostaglandins 18:453–478

    Google Scholar 

  • Guyton JR, Willerson JT (1977) Peripheral venous platelet aggregates in patients with unstable angina pectoris and acute myocardial infarction. Angiology 28:695–701

    Google Scholar 

  • Hahn F, Bernauer W (1970) Studies on heart anaphylaxis. III. Effect of antigen and histamine on perfused guinea-pig heart. Arch Int Pharmacodyn 184:129–157

    Google Scholar 

  • Halushka PV, Rogers RC, Loadholt CB, Colwell JA (1981) Increased platelet thromboxane synthesis in diabetes mellitus. J Lab Clin Med 97:87–96

    Google Scholar 

  • Hamazaki T, Hirai A, Terano T, Sajiki J, Kondo S, Fujita T, Tamura Y, Kumagai A (1982) Effects of orally administered ethyl ester of eicosapentaenoic acid (EPA; C20:5, ω-3) on PGI2-like substance production by rat aorta. Prostaglandins 23:557–567

    Google Scholar 

  • Hamberg M (1976) On the formation of thromboxane B2 and 12-hydroxy-5,8,10,14-eicosatetraenoic acid (12ho-20:4) in tissues from the guinea pig. Biochim Biophys Acta 431:651–654

    Google Scholar 

  • Hamberg M, Fredholm BB (1976) Isomerization of prostaglandin H2 into prostaglandin D2 in the presence of serum albumin. Biochim Biophys Acta 431:189–193

    Google Scholar 

  • Hamberg M, Samuelsson B (1974) Prostaglandin endoperoxides. Novel transformations of arachidonic acid in human platelets. Proc Natl Acad Sci USA 71:3400–3404

    Google Scholar 

  • Hamberg M, Svensson J, Samuelsson B (1974a) Prostaglandin endoperoxides. A new concept concerning the mode of action and release of prostaglandins. Proc Natl Acad Sci USA 71:3824–3828

    Google Scholar 

  • Hamberg M, Svensson J, Wakabayashi T, Samuelsson B (1974b) Isolation and structure of two prostaglandin endoperoxides that cause platelet aggregation. Proc Natl Acad Sci USA 71:345–349

    Google Scholar 

  • Hamberg M, Svensson J, Samuelsson B (1975) Thromboxanes: a new group of biologically active compounds derived from prostaglandin endoperoxides. Proc Natl Acad Sci USA 72:2994–2998

    Google Scholar 

  • Hammarström S (1983) Leukotrienes. Annu Rev Biochem 52:355–377

    Google Scholar 

  • Hammarström S, Falardeau P (1977) Resolution of prostaglandin endoperoxide synthase and thromboxase synthase of human platelets. Proc Natl Acad Sci USA 74:3691–3695

    Google Scholar 

  • Hammarström S, Murphy RC, Samuelsson B, Clark DA, Mioskowski C, Corey EJ (1979) Structure of leukotriene C. Identification of the amino acid part. Biochem Biophys Res Commun 91:1266–1272

    Google Scholar 

  • Hanashiro PK, Weil MH (1967) Anaphylactic shock in man. Report of two cases with detailed hemodynamic and metabolic studies. Arch Intern Med 119:129–140

    Google Scholar 

  • Harrison HE, Reece AH, Johnson M (1978) Decreased vascular prostacyclin in experimental diabetes. Life Sci 23:351–356

    Google Scholar 

  • Hartmann JR, Robinson JA, Gunnar RM (1977) Chemotactic activity in the coronary sinus after experimental myocardial infarction: Effects of pharmacologic interventions on ischemic injury. Am J Cardiol 40:550–555

    Google Scholar 

  • Hassam AG, Crawford MA (1976) The differential incorporation of labelled linoleic, γ-linolenic, dihomo-γ-linolenic and arachidonic acids into the developing rat brain. J Neurochem 27:967–968

    Google Scholar 

  • Hattori Y, Levi R (1984) Negative inotropic effect of leukotrienes: leukotriene C4 and D4 inhibit calcium-dependent contractile responses in potassium-depolarized guinea-pig myocardium. J Pharmacol Exp Ther 230:646–651

    Google Scholar 

  • Heffner JE, Shoemaker SA, Canham EM, Patel M, McMurtry IF, Morris HG, Repine JE (1983) Acethyl glyceryl ether phosphorylcholine-stimulated human platelets cause pulmonary hypertension and edema in isolated rabbit lungs. J Clin Invest 71:351–357

    Google Scholar 

  • Hemler M, Lands WEM, Smith WL (1976) Purification of the cyclooxygenase that forms prostaglandins. Demonstration of two forms of iron in the holoenzyme. J Biol Chem 251:5575–5579

    Google Scholar 

  • Herbaczynska-Cedro K, Moncada S, Mullane KM, Vane JR (1982) Effects of thromboxane A2 on the coronary circulation in vivo (Abstr). 5th International Conference on Prostaglandins, Florence, May 18–21, p 277

    Google Scholar 

  • Herman AG, Claeys M, Moncada S, Vane JR (1979) Biosynthesis of prostacyclin (PGI2) and 12L-hydroxy-5,8,10,14 eicosatetraenoic acid (HETE) by pericardium, pleura, peritoneum and aorta of the rabbit. Prostaglandins 18:439–452

    Google Scholar 

  • Higgs GA, Vane JR (1983) Inhibition of cyclooxygenase and lipoxygenase. Br Med Bull 39:265–270

    Google Scholar 

  • Higgs GA, Bunting S, Moncada S, Vane JR (1976) Polymorphonuclear leukocytes produce thromboxane A2-like activity during phagocytosis. Prostaglandins 12:749–757

    Google Scholar 

  • Higgs GA, Moncada S, Vane JR (1977) Prostacyclin (PGI2) inhibits the formation of platelet thrombi induced by adenosine diphosphate (ADP) in vivo. Br J Pharmacol 61:137P

    Google Scholar 

  • Higgs GA, Flower RJ, Vane JR (1979) A new approach to anti-inflammatory drugs. Biochem Pharmacol 28:1959–1961

    Google Scholar 

  • Higgs GA, Eakins KE, Mugridge KG, Moncada S, Vane JR (1980) The effects of nonsteroid anti-inflammatory drugs on leukocyte migration in carrageenin-induced inflammation. Eur J Pharmacol 66:81–86

    Google Scholar 

  • Higgs GA, Mugridge KG, Moncada S, Vane JR (1984) Inhibition of tissue damage by the arachidonate lipoxygenase inhibitor BW755C. Proc Natl Acad Sci USA 81:2890–2892

    Google Scholar 

  • Hill JH, Ward PA (1971) The phlogistic role of C3 leukotactic fragments in myocardial infarcts of rats. J Exp Med 133:885–900

    Google Scholar 

  • Hillis LD, Braunwald E (1977) Myocardial ischemia. N Engl J Med 296:971–978

    Google Scholar 

  • Hillis LD, Braunwald E (1978) Coronary-artery spasm. N Engl J Med 299:695–702

    Google Scholar 

  • Hintze TH, Kaley G (1984) Ventricular receptors activated following myocardial prostaglandin synthesis initiate reflex hypotension, reduction in heart rate, and redistribution of cardiac output in the dog. Circ Res 54:239–247

    Google Scholar 

  • Hintze T, Kaley G, Martin EG, Messina EJ (1978) PGI2 induces bradycardia in the dog. Prostaglandins 15:712

    Google Scholar 

  • Hintze TH, Martin EG, Messina EJ, Kaley G (1979) Prostacyclin (PGI2) elicits reflex bradycardia in dogs: evidence for vagal mediation. Proc Soc Exp Biol Med 162:96–100

    Google Scholar 

  • Hintze TH, Panzenbeck MJ, Messina EJ, Kaley G (1981) Prostacyclin (PGI2) lowers heart rate in the conscious dog. Cardiovasc Res 15:538–546

    Google Scholar 

  • Hintze TH, Kichuk MR, Stern H, Harrison J, Kaley G (1984) Prostacyclin dilates large coronary arteries in conscious dogs (Abstr). In: Neri Serneri GG, Masotti G, Gensini GF (eds) Platelets prostaglandins and the cardiovascular system. Florence, p 96

    Google Scholar 

  • Hirata F, Schiffmann E, Venkatasubramanian K, Salomon D, Axelrod J (1980) A phospholipase A2 inhibitory protein in rabbit neutrophils induced by glucocorticoids. Proc Natl Acad Sci USA 77:2533–2536

    Google Scholar 

  • Hirsh SA (1982) Acute allergic reaction with coronary vasospasm. Am Heart J 103:928

    Google Scholar 

  • Hirsh PD, Hillis LD, Campbell WB, Firth BG, Willerson JT (1981) Release of prostaglandins and thromboxane into the coronary circulation in patients with ischemic heart disease. N Engl J Med 304:685–691

    Google Scholar 

  • Hirsh PD, Firth BG, Campbell WB, Willerson JT, Hillis LD (1982) Influence of blood sampling site and technique on thromboxane concentrations in patients with ischemic heart disease. Am Heart J 104:234–237

    Google Scholar 

  • Hong SCL, Levine L (1976) Inhibition of arachidonic acid release from cells as the biochemical action of anti-inflammatory corticoids. Proc Natl Acad Sci USA 73:1730–1734

    Google Scholar 

  • Hornstra G, Christ-Hazelhof E, Haddeman E, ten Hoor F, Nugteren DH (1981) Fish oil feeding lowers thromboxane and prostacyclin production by rat platelets and aorta and does not result in the formation of prostaglandin I3. Prostaglandins 21:727–738

    Google Scholar 

  • Hsueh W, Needleman P (1978) Sites of lipase activation and prostaglandin synthesis in isolated, perfused rabbit hearts and hydronephrotic kidneys. Prostaglandins 16:661–681

    Google Scholar 

  • Imai S, Takeda K, Nakagawa Y, Nakazawa M, Shimamoto N, Katano Y (1983) Effects of prostaglandins and related compounds on the canine coronary artery and arteriole. Adv Prostaglandin Thromboxane Leukotriene Res 11:401–405

    Google Scholar 

  • Ingerman-Wojenski C, Silver MJ, Smith JB, Macarak E (1981) Bovine endothelial cells in culture procedure thromboxane as well as prostacyclin. J Clin Invest 67:1292–1296

    Google Scholar 

  • Irvine RF (1982) How is the level of free arachidonic acid controlled in mammalian cells? Biochem J 204:3–16

    Google Scholar 

  • Isakson PC, Raz A, Denny SE, Wyche A, Needleman P (1977) Hormonal stimulation of arachidonate release from isolated perfused organs. Relationship to prostaglandin biosynthesis. Prostaglandins 14:853–871

    Google Scholar 

  • Ito T, Ogawa K, Enomoto I, Hashimoto H, Kai I, Satake T (1980) Cormparison of the effects of PGI2 and PGE1 on coronary and systemic hemodynamics and coronary arterial cyclic nucleotide levels in dogs. Adv Prostaglandin Thromboxane Res 7:641–646

    Google Scholar 

  • Jakubowski JA, Ardlie NG (1979) Evidence for the mechanism by which eicosapentaenoic acid inhibits human platelet aggregation and secretion-implications for the prevention of vascular disease. Thromb Res 16:205–217

    Google Scholar 

  • Johnson AS, Scheinberg SR, Gerisch RA, Saltzstein HC (1953) Effect of cortisone on the size of experimentally produced infarcts. Circulation 7:224–228

    Google Scholar 

  • Johnson RA, Morton DR, Kinner JH, Gorman RR, McGuire JC, Sun FF, Wittacker N, Bunting S, Salmon J, Moncada S, Vane JR (1976) The chemical structure of prostaglandin X (prostacyclin). Prostaglandins 12:915–928

    Google Scholar 

  • Jørgensen KA, Steffersen E, Dyerberg J (1979) Stability of prostacyclin in plasma. Lancet 1:1352

    Google Scholar 

  • Jouve R, Rolland PH, Delboy C, Mercier C (1984) Thromboxane B2, 6-keto-PGF, PGE2, PGF and PGA1 plasma levels in arteriosclerosis obliterans: Relationship to clinical manifestation, risk factors, and arterial pathoanatomy. Am Heart J 107:45–52

    Google Scholar 

  • Jugdutt BI, Hutchins GM, Bulkley BH, Pitt B, Becker LC (1979) Effect of indomethacin on collateral blood flow and infarct size in the conscious dog. Circulation 4:734–743

    Google Scholar 

  • Jugdutt BI, Hutchins GM, Bulkley BH, Becker LC (1980) Salvage of ischemic myocardium by ibuprofen during infarction in the conscious dog. Am J Cardiol 46:74–82

    Google Scholar 

  • Jugdutt BI, Hutchins GM, Bulkley GH, Becker LC (1981) Dissimilar effects of prostacyclin, prostaglandin E1 and prostaglandin E2 on myocardial infarct size after coronary occlusion in conscious dogs. Circ Res 49:685–700

    Google Scholar 

  • Kaley G, Hintze TH, Messina EJ (1980) Role of prostaglandins in ventricular reflexes. Adv Prostaglandin Thromboxane Res 7:601–608

    Google Scholar 

  • Karim SMM, Sandler M, Williams ED (1967) Distribution of prostaglandins in human tissues. Br J Pharmacol Chemother 31:340–344

    Google Scholar 

  • Karim SMM, Hillier K, Devlin J (1968) Distribution of prostaglandins E1, E2, F and F in some animal tissues. J Pharm Pharmacol 20:749–753

    Google Scholar 

  • Karmazyn M (1983) Reduction of enzyme release from perfused ischemic hearts by steroidal and non-steroidal prostaglandin synthesis inhibitors. Prostaglandins Leukotrienes Med 11:299–315

    Google Scholar 

  • Karmazyn M, Horrobin DF, Manku MS, Cunnane SC, Karmali RA, Ally AI, Morgan RO, Nicolaou KC, Barnette WE (1978) Effects of prostacyclin on perfusion pressure, electrical activity, rate and force of contraction in isolated rat and rabbit hearts. Life Sci 22:2079–2086

    Google Scholar 

  • Kellaway CH, Trethewie ER (1940) The liberation of a slow-reacting smooth-muscle stimulating substance in anaphylaxis. Q J Exp Physiol 30:121–145

    Google Scholar 

  • Kelly JF, Patterson P (1974) Anaphylaxis. Course, mechanism, and streatment. JAMA 227:1431–1436

    Google Scholar 

  • Kirmser R, Berger HJ, Cohen LS, Wolfson S (1976) Effect of indomethacin, a prostaglandin inhibitor on epicardial ST elevation and myocardial flow after coronary occlusion. Circulation (Suppl 2) 53/54:II-194

    Google Scholar 

  • Klitzke AK (1984) Nafazatrom (BAYg6575), a potent stimulator of prostacyclin release from cardiac and renal vessel wall. Arch Int Pharmacodyn 271:220–228

    Google Scholar 

  • Klitzke AK, Trompler AT (1984) Leukotriene C4 stimulates prostacyclin release from the cardiac vessel wall (Abstr). In: Neri Serneri GG, Mastotti G, Gensini GF (eds) Platelets prostaglandins and the cardiovascular system. Bohringer-Ingelheim, Florence, p 43

    Google Scholar 

  • Kloner RA, Fishbein MC, Lew H, Maroko PR, Braunwald E (1978) Mummification of the infarcted myocardium by high dose corticosteroids. Circulation 57:56–63

    Google Scholar 

  • Körner CF, Hausmann G, Gemsa D, Resch K (1984) Rate of prostaglandin synthesis is not controlled by phospholipase A activity but reincorporation of released fatty acids into phospholipids. Agents Actions 15:28–30

    Google Scholar 

  • Korth R, Riess H, Brehm G, Hiller E (1984) Influence of unsaturated platelet-activating factor on aggregation, serotonin release and thomboxane synthesis of human thrombocytes (Abst). In: Neri Serneri GG, Masotti G, Gensini GF (eds) Platelets prostaglandins and the cardiovascular system. Boehringer-Ingelheim, Florence, p 157

    Google Scholar 

  • Kraemer RJ, Phernetton TM, Folts JD (1976) Prostaglandin-like substances in coronary venous blood following myocardial ischemia. J Pharmacol Exp Ther 199:611–619

    Google Scholar 

  • Krell RD, Osborn R, Falcone K, Vickery L (1981) Enhancement of isolated airway response to bronchoconstrictive agonists by the slow-reacting substance of anaphylaxis FPL 55712. Prostaglandins 22:423–432

    Google Scholar 

  • Kröner EE, Peskar BA, Fischer H, Ferber E (1981) Control of arachidonic acid accumulation in bone marrow-derived macrophages by acetyltransferases. J Biol Chem 256:3690–3697

    Google Scholar 

  • Ku EC, McPherson SE, Signor C, Chertock H, Cash WD (1983) Characterization of imidazo(1,5-a)pyridine-5-hexanoic acid (CGS-13080) as a selective thromboxane synthetase inhibitor using in vitro and in vivo biochemical models. Biochem Biophys Res Commun 112:899–906

    Google Scholar 

  • Kukovetz WR, Holzmann S, Wurm A, Pöch G (1979) Prostacyclin increase cAMP in coronary arteries. J Cyclic Nucleotide Res 5:469–475

    Google Scholar 

  • Kulmacz RJ, Lands WEM (1983) Characteristics of prostaglandin H synthetase. Adv Prostaglandin Thromboxane Leukotriene Res 11:93–97

    Google Scholar 

  • Kunze H, Vogt W (1971) Significance of phospholipase A for prostaglandin formation. Ann NY Acad Sci 180:123–125

    Google Scholar 

  • Kurzrock R, Lieb CC (1930) Biochemical studies of human semen. II. The action of semen on the human uterus. Proc Soc Exp Biol Med 28:268–272

    Google Scholar 

  • Lands WEM (1979) The biosynthesis and metabolism of prostaglandins. Annu Rev Physiol 41:633–652

    Google Scholar 

  • Lands WEM, Samuelsson B (1968) Phospholipid precursors of prostaglandins. Biochim Biophys Acta 164:426–429

    Google Scholar 

  • Larrue J, Leroux C, Daret D, Bricaud H (1982) Decreased prostaglandin production in cultured smooth muscle cells from atherosclerotic rabbit aorta. Biochim Biophys Acta 710:257–263

    Google Scholar 

  • Lee T, Malone B, Blank ML, Snyder F (1981) 1-alkyl-2-acethyl-sn-glycero-3-phosphocholine (platelet-activating factor) stimulates calcium influx in rabbit platelets. Biochem Biophys Res Commun 102:1262–1268

    Google Scholar 

  • Lefer AM, Polansky EW (1979) Beneficial effects of ibuprofen in acute myocardial ischemia. Cardiology 64:265–274

    Google Scholar 

  • Lefer AM, Ogletree ML, Smith JB, Silver MJ, Nicolaou KC, Barnette WE, Gasic GP (1978) Prostacyclin: A potentially valuable agent for preserving myocardial tissue in acute myocardial ischemia. Science 200:52–54

    Google Scholar 

  • Lefer AM, Okamatsu S, Smith EF III, Smith JB (1981) Beneficial effect of a new thromboxane synthetase inhibitor in arachidonate-induced sudden death. Thromb Res 23:265–273

    Google Scholar 

  • Lefer AM, Müller HF, Smith JB (1984) Pathophysiological mechanisms of sudden death induced by platelet activating factor. Br J Pharmacol 83:125–130

    Google Scholar 

  • Letts LG, Piper JP (1981) The effects of leukotrienes (LT) D4 and C4 on the guineapig isolated heart. J Physiol (Lond) 317:94P–95P

    Google Scholar 

  • Letts LG, Piper PJ (1982) The actions of leukotrienes (LT) C4 and D4 on the guineapig isolated heart. Br J Pharmacol 76:169–176

    Google Scholar 

  • Letts LG, Piper PJ (1983) Cardiac actions of leukotrienes B4, C4, D4 and E4 in guinea pig and rat in vitro. Adv Prostaglandin Thromboxane Leukotriene Res 11:391–395

    Google Scholar 

  • Letts LG, Newman DL, Greenwald SE, Piper PJ (1983a) Effects of intra-coronary administration of leukotriene D4 in the anaesthetized dog. Prostaglandins 26:563–572

    Google Scholar 

  • Letts LG, Piper PJ, Newman DL (1983b) Leukotrienes and their action on the coronary circulation. In: Piper PJ (ed) Leuktorienes and other lipoxygenase products. Research Studies Press, Chichester, pp 94–107

    Google Scholar 

  • Levi R (1972) Effects of exogenous and immunologically released histamine on the isolated heart: a quantitative comparison. J Pharmacol Exp Ther 182:227–238

    Google Scholar 

  • Levi R, Burke JA (1980) Cardiac anaphylaxis: SRS-A potentiates and extends the effects of released histamine. Eur J Pharmacol 62:41–49

    Google Scholar 

  • Levi R, Allan G, Zavecz JH (1976) Prostaglandins and cardiac anaphylaxis. Life Sci 18:1255–1264

    Google Scholar 

  • Levi R, Burke JA, Holland BA (1979) Slow reacting substance of anaphylaxis (SRS-A): Possible role in cardiac hypersensitivity reactions. Fed Proc 38:261

    Google Scholar 

  • Levi R, Burke JA, Corey EJ (1982) SRS-A, leuktrienes, and immediate hypersensitivity reactions of the heart. In: Samuelsson, B., Paoletti R (eds) Leukotrienes and other lipxoygenase products. Raven, New York, pp 215–222

    Google Scholar 

  • Levi R, Burke JA, Guo ZG, Hattori Y, Hoppens CM, McManus LM, McManus LM, Hanahan DJ, Pinckard RN (1984) Acetyl glcyerly ether phosphorylcholine (AGEPC). A putative mediator of cardiac anaphylaxis in the guinea pig. Circ Res 54:117–124

    Google Scholar 

  • Levine PH (1973) On acute effect of cigarette smoking on platelet function. Circulation 48:619–623

    Google Scholar 

  • Levy JV (1978) Contractile responses to prostacyclin (PGI2) of isolated human saphenous and rat venous tissue. Prostaglandins 16:93–97

    Google Scholar 

  • Lewis HD, Davis JW, Archibal DG, Steinke WE, Smitherman TC, Doherty JE, Schnaper HW, Le Winter MM, Linares E, Pouget JM, Sabharwal SC, Chesler E, DeMots H (1983) Protective effects of aspirin against acute myocardial infarction and death in men with unstable angina. Results of a Veterans Administration Cooperative Study. N Engl J Med 309:396–403

    Google Scholar 

  • Lewis RA, Drazen JM, Austen KF, Clark DA, Corey EJ (1980a) Identification of the C(6)-S-conjugate of leukotriene A with cysteine as a naturally occurring slow reacting substance of anaphylaxis (SRS-A). Importance of the 11-cis-geometry for biological activity. Biochem Biophys Res Commun 96:271–277

    Google Scholar 

  • Lewis RA, Austen KF, Drazen MJ, Clark DA, Marfat A, Corey EJ (1980b) Slow reacting substances of anaphylaxis: Identification of leukotrienes C-1 and D from human and rat sources. Proc Natl Acad Sci USA 77:3710–3714

    Google Scholar 

  • Lewy RI, Smith JB, Silver MJ, Saia J, Walinsky P, Wiener L (1979a) Detection of thromboxane B2 in peripheral blood of patients with Prinzmetal's angina. Prostaglandin Med 5:243–248

    Google Scholar 

  • Lewy RI, Wiener L, Smith JB, Walinsky P, Silver MJ, Saia J (1979b) Comparison of plasma concentrations of thromboxane B2 in Prinzmetal's variant angina and classical angina pertoris. Clin Cardiol 2:404–406

    Google Scholar 

  • Lewy RI, Wiener L, Walinsky P, Lefer AM, Silver MJ, Smith JB (1980) Thromboxane release during pacing-induced angina pectoris: possible vasoconstrictor influence on the coronary vasculature. Circulation 61:1165–1171

    Google Scholar 

  • Libby P, Maroko PR, Bloor CM, Sobel BE, Braunwald E (1973) Reduction of experimental myocardial infarct size by corticosteroid administration. J Clin Invest 52:599–607

    Google Scholar 

  • Leiebig R, Bernauer W, Peskar BA (1975) Prostaglandin, slow-reacting substance, and histamine release from anaphylactic guinea pig hearts, and its pharmacological modification. Naunyn Schmiedebergs Arch Pharmacol 289:65–76

    Google Scholar 

  • Lilienfeld A, Hochstein E, Weiss W (1950) Acute myocarditis with bundle branch block due to sulfonamide sensitivity. Circulation 1:1060–1064

    Google Scholar 

  • Lotner GZ, Lynch JM, Betz SJ, Henson PM (1980) Human neutrophil derived plateletactivating factor. J Immunol 124:676–684

    Google Scholar 

  • Lucchesi BR, Jolly SR, Bailie MB, Abrams GD (1982) Protection of ischemic myocardium by BW755C. Fed Proc 41:8576

    Google Scholar 

  • Luchi RJ, Chahine RA (1981) Coronary artery spasm, coronary artery thrombosis and myocardial infarction. Ann Intern Med 95:502–505

    Google Scholar 

  • MacIntyre DE, Pearson JD, Gordon JL (1978) Localization and stimulation of prostacyclin production in vascular cells. Nature 271:549–551

    Google Scholar 

  • MacIntyre DE, Shaw AM, Pollock WK, Marks G, Westwick J (1982) The role of endogenous arachidonate metabolites in phospholipid-induced human platelet activation (Abstr). 5th International Conference on Prostaglandins, Florence, May 18–21, p 714

    Google Scholar 

  • Maclean D, Fishbein MC, Braunwald E (1978a) Long-term preservation of ischemic myocardium after experimental coronary artery occlusion. J Clin Invest 61:541–551

    Google Scholar 

  • Maclean D, Fishbein MC, Blum RI, Braunwald E, Maroko PR (1978b) Long-term preservation of ischemic myocardium by ibuprofen after experimental coronary artery occlusion. Am J Cardiol 41:394

    Google Scholar 

  • MacNab MW, foltz EL, Graves BS, Rinehart RK, Tripp SL, Feliciano NR, Sen S (1984) The effects of a new thromboxane synthetase inhibitor, CGS-13080, in man. J Clin Pharmacol 24:76–83

    Google Scholar 

  • Mallory GK, White PD, Salcedo-Salgar J (1939) The speed of healing of myocardial infarction. A study of the pathologic anatomy in seventy-two cases. Am Heart J 18:647–671

    Google Scholar 

  • Marooka S, Kobayashi M, Shimamoto T (1977) Experimental ischemic heart disease induced by thromboxane A2 in rabbits. Jpn Circ J 41:1373–1379

    Google Scholar 

  • Maseri A, L'Abbate A, Chierchia S, Parodi O, Severi S, Biagini A, Distante A, Marzilli M, Ballestra AM (1979) Significance of spasm in the pathogenesis of ischemic heart disease. Am J Cardiol 44:788–792

    Google Scholar 

  • McManus JF, Lawlor JJ (1950) Myocardial infarction following the administration of tetanus antitoxin. N Engl J Med 242:17–19

    Google Scholar 

  • McManus LM, Hanahan DJ, Demopoulos CA, Pinckard RN (1980) Pathobiology of the intravenous infusion of acetyl glyceryl ether phosphorylcholine (AGEPC), a synthetic platelet-activating factor (PAF), in the rabbit. J Immunol 124:2919–2924

    Google Scholar 

  • McManus LM, Hanahan DJ, Pinckard RN (1981) Human platelet stimulation by acetyl glyceryl ether phosphoylacholine. J Clin Invest 67:903–906

    Google Scholar 

  • McManus LM, Fitzpatrick FA, Hanahan DJ, Pinckard RN (1983) Thromboxane B2 release following acetyl glyceryl ether phosphorylcholine infusion in the rabbit. Immunopharmacology 5:197–207

    Google Scholar 

  • Meacock SCR, Kitchen EA (1976) Some effects of non-steroidal anti-inflammatory drugs on leukocyte migration. Agents Actions 6:320–325

    Google Scholar 

  • Metha J, Mehta P, Burger C, Pepine JC (1978) Platelet aggregation studies in coronary artery disease. Part 4. Effect of aspirin. Atherosclerosis 31:169–175

    Google Scholar 

  • Mehta J, Mehta P, Conti CR (1980a) Platelet function studies in coronary heart disease. IX. Increased platelet prostaglandin generation and abnormal platelet sensitivity to prostacyclin and endoperoxide analog in angina pectoris. Am J Cardiol 46:943–947

    Google Scholar 

  • Mehta J, Mehta P, Pepine CJ, Conti CR (1980b) Platelet function studies in coronary artery disease. VII. Effect of aspirin and tachycardia stress on aortic and coronary venous blood. Am J Cardiol 45:945–951

    Google Scholar 

  • Mehta J, Mehta P, Zipper R, Horalek C (1981a) Thromboxane/prostacyclin equilibrium at rest and during exercise in man and its relationship to myocardial ischemia. Clin Res 29:223A

    Google Scholar 

  • Mehta J, Nichols WW, Mehta P, Pepine C, Conti CR (1981b) Effects of prostacyclin on systemic and coronary hemodynamics in the dog. Am Heart J 102:835–840

    Google Scholar 

  • Mehta J, Mehta P, Feldman RL (1982) Severe intracoronary thromboxane release preceding acute coronary artery occlusion. Prostaglandins Leukotrienes Med 8:599–605

    Google Scholar 

  • Mehta J, Mehta P, Feldman RL, Hovalek C (1984a) Thromboxane release in coronary artery disease: spontaneous versus pacing-induced angina. Am Heart J 107:286–292

    Google Scholar 

  • Mehta J, Nichols WW, Goldman R (1984b) Prostacyclin release following endoperoxide analogue infusion in the intact dog. Am J Physiol 246:R205–R210

    Google Scholar 

  • Mencia-Huerta JM, Benveniste J (1979) Platelet-activating factor and macrophages. I. Evidence for the release from rat and mouse peritoneal macrophages and not from mastocytes. Eur J Immunol 9:409–415

    Google Scholar 

  • Mencia-Huerta JM, Ninio E, Landes A, Godfroid JJ, Benveniste J (1981) Enzymatic assembly of platelet-activating factor (PAF-acether). Fed Proc 40:1015

    Google Scholar 

  • Menys VC, Davies JA (1983) Selective inhibition of thromboxane synthetase with dazoxiben — basis of its inhibitory effect on platelet adhesion. Thromb Haemost 49:96–101

    Google Scholar 

  • Michelassi F, Landa L, Hill RD, Lowenstein E, Watkins WD, Petkau AJ, Zapol WM (1982) Leukotriene D4: A potent coronary artery vasoconstrictor associated with impaired ventricular contraction. Science 217:841–843

    Google Scholar 

  • Michelassi F, Landa L, Hill RD, Huttemeier P, Lowenstein E, Zapol WM, Watkins WD (1983) Leukotriene D4: A potent sheep coronary vasoconstrictor not blocked by ibuprofen. Adv Prostaglandin Thromboxane Leukotriene Res 11:397–399

    Google Scholar 

  • Miyamoto T, Ogino N, Yamamoto S, Hayaishi O (1976) Purification of prostaglandin endoperoxide synthetase from bovine vesicular gland microsomes. J Biol Chem 251:2629–2636

    Google Scholar 

  • Moncada S (1982) Biological importance of prostacyclin. Br J Pharmacol 76:3–31

    Google Scholar 

  • Moncada S, Vane JR (1978) Unstable metabolites of arachidonic acid and their role in haemostasis and thrombosis. Br Med Bull 34:129–135

    Google Scholar 

  • Moncada S, Vane JR (1979) Pharmacology and endogenous roles of prostaglandin endoperoxides, thromboxane A2, and prostacyclin. Pharmacol Rev 30:293–333

    Google Scholar 

  • Moncada S, Gryglewski R, Bunting S, Vane JR (1976a) An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature 263:663–665

    Google Scholar 

  • Moncada S, Gryglewski RJ, Bunting S, Vane JR (1976b) A lipid peroxide inhibits the enzyme in blood vessel microsomes that generates from prostaglandin endoperoxides the substance (prostaglandin X) which prevents platelet aggregation. Prostaglandins 12:715–737

    Google Scholar 

  • Moncada S, Bunting S, Mullane K, Thorogood P, Vane JR, Raz A, Needleman P (1977a) Imidazole: A selective inhibitor of thromboxane synthetase. Prostaglandins 13:611–618

    Google Scholar 

  • Moncada S, Herman AG, Higgs EA, Vane JR (1977b) Differential formation of prostacyclin (PGX or PGI2) by layers of the arterial wall. An explanation for the anti-thrombotic properties of vascular endothelium. Thromb Res 11:323–344

    Google Scholar 

  • Morley J, Bray MA, Jones RW, Nugteren DH, van Dorp DA (1979) Prostaglandin and thromboxane production by human and guinea-pig macrophages and leukocytes. Prostaglandins 17:729–736

    Google Scholar 

  • Morris HR, Taylor GW, Piper PJ, Tippins JR (1980) Structure of slow-reacting substance of anaphylaxis from guinea pig lung. Nature 285:104–106

    Google Scholar 

  • Mullane KM, Moncada S (1982) The salvage of ischemic myocardium by BW755C in anaesthetized dogs. Prostaglandins 24:255–266

    Google Scholar 

  • Mullane KM, Bradley G, Moncada S (1982) The interaction of platelet derived mediators on isolated canine coronary arteries. Eur J Pharmacol 84:115–118

    Google Scholar 

  • Mullane KM, Read N, Salmon JA, Moncada S (1984) Role of leukocytes in acute myocardial infarction in anaesthetized dogs: Relationship to myocardial salvage by anti-inflammatory drugs. J Pharmacol Exp Ther 228:510–522

    Google Scholar 

  • Müller B, Schneider J, Hennies HH, Flohé L (1984) Cardioprotective action of the new stable epoprostenol analogue CG 4203 in rat models of cardiac hypoxia and ischemia. Drug Res 34:1506–1509

    Google Scholar 

  • Murphy RC, Hammarström S, Samuelsson B (1979) Leukotriene C: a slow reacting substance from murine mastocytoma cells. Proc Natl Acad Sci USA 76:4275–4279

    Google Scholar 

  • Mustard JF, Kinlough-Rathbone RL, Packham MA (1983) Aspirin in the treatment of cardiovascular disease: A Review. Am J Med 74:43–49

    Google Scholar 

  • Nadler JL, Yamamoto J, Zipser R, Horton R (1984) Nicotine inhibits prostacyclin and stimulates thromboxane in chronic smokers (Abstr). Kyoto Conference on Prostaglandins, Kyoto, November 25–28, p 231

    Google Scholar 

  • Naito J, Komatsu H, Ujiie A, Hamano S, Kubota T, Tsuboshima M (1983) Effects of thromboxane synthetase inhibitors on aggregation of rabbit platelets. Eur J Pharmacol 91:41–48

    Google Scholar 

  • Narumiya S, Salmon JA, Cottee FH, Weartherley BC, Flower RJ (1981) Arachidonic acid 15-lipoxygenase from rabbit peritoneal polymorphonuclear leukocytes. Partial purification and properties. J Biol Chem 256:9583–9592

    Google Scholar 

  • Needleman P (1978) Characterization of the reaction sequence involved in phospholipid labeling and deacylation and prostaglandin synthesis and actions. J Allergy Clin Immunol 62:96–102

    Google Scholar 

  • Needleman P, Key SC, Isakson PC, Kulkarni PS (1975) Relationship between oxygen tension, coronary vasodilatation and prostaglandin biosynthesis in the isolated heart. Prostaglandins 9:123–134

    Google Scholar 

  • Needleman P, Moncada S, Bunting S, Vane JR, Hamberg M, Samuelsson B (1976) Identification of an enzyme in platelet microsomes which generates thromboxane A2 from prostaglandin endoperoxides. Nature 261:558–560

    Google Scholar 

  • Needleman P, Kulkarni PS, Raz A (1977) Coronary tone modulation: Formation and actions of prostaglandins, endoperoxides and thromboxanes. Science 195:409–412

    Google Scholar 

  • Needleman P, Raz A, Minkes MS, Ferendelli JA, Sprecher H (1979) Triene prostaglandins: prostacyclin and thromboxane biosynthesis and unique biological properties. Proc Natl Acad Sci USA 76:944–948

    Google Scholar 

  • Neri Serneri GG (1984) Prostaglandins and ischemic heart disease (Abstr). In: Neri Serneri GG, Masotti G, Gensini GF (eds) Platelets, prostaglandins and the cardiovascular system. Boehringer-Ingelheim, Florence, pp 20–21

    Google Scholar 

  • Neri-Serneri GG, Gensini GF, Abbate R, Mugnaini C, Favilla S, Brunelli C, Chierchia S, Parodi O (1981a) Increased fibrinopeptide A formation and thromboxane A2 production in patients with ischemic heart disease: relationships to coronary pathoanatomy, risk factors, and clinical manifestations. Am Heart J 101:185–194

    Google Scholar 

  • Neri Serneri GG, Masotti G, Gensini GF, Abbate R, Poggesi L, Galanti G, Favilla S (1981b) Prostacyclin, thromboxane, and ischemic heart disease. In: Johnsson Hegyeli R (ed) Prostaglandins and cardiovascular disease. Raven, New York, pp 139–157

    Google Scholar 

  • Neri Serneri GG, Masotti G, Poggesi L, Galanti G, Morettini A, Scarti L (1982) Reduced prostacyclin production in patients with different manifestations of ischemic heart disease. Am J Cardiol 49:1146–1151

    Google Scholar 

  • Neri Serneri GG, Abbate R, Gensini GF, Panetta A, Casolo GC, Carini M (1983) TXA2 production by human arteries and veins. Prostaglandins 25:753–766

    Google Scholar 

  • Neri Serneri GG, Gensini GF, Abbate R, Prisco D, Rogasi PG, Casolo GC, Di Donato M, Dabizzi MP, Fantini F (1984a) Abnormal cardiopulmonary synthesis of thromboxane A2 in patients with spontaneous angina (Abstr). In: Neri Serneri GG, Masotti G, Gensini GF (eds) Platelets prostaglandins and the cardiovascular system. Bohringer-Ingelheim, Florence, pp 109–111

    Google Scholar 

  • Neri Serneri GG, Gensini GF, Masotti G, Abbate R, Morettini A, Poggesi L, Fortini A (1984b) Role of prostacyclin and thromboxane A2 in ischemic heart disease. Adv Exp Med Biol 164:175–185

    Google Scholar 

  • Nijkamp FP, Moncada S, White HL, Vane JR (1977) Diversion of prostaglandin endoperoxide metabolism by selective inhibition of thromboxane A2 biosynthesis in lung, spleen or platelets. Eur J Pharmacol 44:179–186

    Google Scholar 

  • Nowak J, Kaijser L, Wennmalm A (1980) Cardiac synthesis of prostaglandins from arachidonic acid in man. Prostaglandins Med 4:205–214

    Google Scholar 

  • Nugteren DH (1975) Arachidonate lipoxygenase in blood platelets. Biochim Biophys Acta 380:299–307

    Google Scholar 

  • Nugteren DH, Hazelhof E (1973) Isolation and properties of intermediates in prostaglandin biosynthesis. Biochim Biophys Acta 326:448–461

    Google Scholar 

  • Nugteren DH, van Dorp DA, Bergström S, Hamberg M, Samuelsson B (1966) Absolute configuration of the prostaglandins. Nature 212:38–39

    Google Scholar 

  • O'Flaherty JT, Lees CJ, Stimler NP (1981) Anaphylatoxic polymorphonuclear neutrophil (PMN)-stimulating actions of platelet activating factor (PAF). Fed Proc 40:1015p

    Google Scholar 

  • Ogawa K, Ito T, Enomoto I, Hashimoto H, Kai I, Satake T (1980) Increase of coronary flow and levels of PGE1 and PGF from the ischemic area of experimental myocardial infarction. Adv Prostaglandin Thromboxane Res 7:665–669

    Google Scholar 

  • Ogawa K, Sakai K, Ito T, Watanabe J, Satake T (1983) Effects of selective thromboxane synthetase inhibitor and indomethacin on prostacyclin and thromboxane A2 from ischemic canine heart. Adv Prostaglandin Thromboxane Leukotriene Res 11:371–376

    Google Scholar 

  • Ogino N, Miyamoto T, Yamamoto S, Hayaishi O (1977) Prostaglandin endoperoxide E isomerase from bovine vesicular gland microsomes, a glutathione-requiring enzyme. J Biol Chem 252:890–895

    Google Scholar 

  • Ogletree ML, Lefer AM (1976) Influences of nonsteroidal anti-inflammatory agents on myocardial ischemia in the cat. J Pharmacol Exp Ther 197:582–593

    Google Scholar 

  • Ogletree ML, Smith JB, Lefer AM (1978) Actions of prostaglandins on isolated perfused cat coronary arteries. Am J Physiol 235:H400–H406

    Google Scholar 

  • Ogletree ML, Lefer AM, Smith JB, Nicolaou KC (1979) Studies on the protective effect of prostacyclin in acute myocardial ischemia. Eur J Pharmacol 56:95–103

    Google Scholar 

  • O'Grady J, Warrington S, Moti MJ, Bunting S, Flower R, Fowle ASE, Higgs EA, Moncada S (1980) Effects of intravenous infusion of prostacyclin (PGI2) in man. Prostaglandins 19:319–332

    Google Scholar 

  • Ohki S, Ogino N, Yamamoto S, Hayashi O (1979) Prostaglandin hydroperoxidase, an integral part of prostaglandin endoperoxide synthetase from bovine vesicular gland microsomes. J Biol Chem 254:829–836

    Google Scholar 

  • Ohlendorf R, Perzborn E, Schrör K (1980) Prevention of infarction-induced decrease in circulating platelet count by prostacyclin. Thromb Res 19:447–453

    Google Scholar 

  • Oliva PB (1983) The role of coronary artery spasm in acute myocardial infarction. Cardiovasc Clin 14:45–58

    Google Scholar 

  • Orange RP, Austen KF (1969) Slow reacting substance of anaphylaxis. Adv Immunol 10:105–144

    Google Scholar 

  • Osher J, Lang TW, Meerbaum S, Hashimoto K, Farcot JC, Corday E (1976) Methylprednisolone treatment in acute myocardial infarction. Effect on regional and global myocardial function. Am J Cardiol 37:564–571

    Google Scholar 

  • Palmblad J, Malmsten CL, Udén A, Rådmark O, Engstedt L, Samuelsson B (1981) Leukotriene B4 is a potent and stereospecific stimulator of neutrophil chemotaxis and adherence. Blood 58:658–661

    Google Scholar 

  • Panzenbeck MJ, Kaley G (1983) Leukotriene D4 reduces coronary blood flow in the anaesthetized dog. Prostaglandins 25:661–670

    Google Scholar 

  • Patrignani P, Filabozzi P, Patrono C (1982) Selective cumulative inhibition of platelet thromboxane production by low-dose aspirin in healthy subjects. J Clin Invest 69:1366–1372

    Google Scholar 

  • Petsas AA, Kotler MN (1973) Electrocardiographic changes associated with penicillin anaphylaxis. Chest 64:66–69

    Google Scholar 

  • Persantine-Aspirin Reinfarction Study Research Group (1980) Persantine and aspirin in coronary heart disease. Circulation 62:449–461

    Google Scholar 

  • Peskar BA, Steffens Ch, Peskar BM (1979) Radioimmunoassay of 6-keto-prostaglandin F in biological material. In: Albertini A, Da Prada M, Peskar BA (eds) Radio-immunoassay of drugs and hormones in cardiovascular medicine. Elsevier/North-Holland, Amsterdam, pp 239–250

    Google Scholar 

  • Peskar BA, Aehringhaus U, Weinerowski P, Wittmann G (1984) Pharmacological modification of leukotriene release and coronary constrictor effect in cardiac anaphylaxis (Abstr). In: Neri Serneri GG, Masotti G, Gensini GF (eds) Platelets prostaglandins and the cardiovascular system. Boehringer-Ingelheim, Florence, p C1

    Google Scholar 

  • Pifer DD, Cagen LM, Chesney CM (1981) Stability of prostaglandin I2 in human blood. Prostaglandins 21:165–175

    Google Scholar 

  • Piper PJ (1983) Pharmacology of leukotrienes. Br Med Bull 39:255–259

    Google Scholar 

  • Piper PJ, Vane J (1971) The release of prostaglandins from lung and other tissues. Ann NY Acad Sci 180:363–383

    Google Scholar 

  • Piper PJ, Letts LG, Samhoun MN, Tippins JR, Palmer MA (1982) Actions of leukotrienes on vascular, airway and gastrointestinal smooth muscle. In: Samuelsson B, Paoletti R (eds) Leukotrienes and other lipoxygenase products. Raven, New York, pp 169–181

    Google Scholar 

  • Piper PJ, Letts LG, Galton SA (1983a) Generation of leukotriene like substance from porcine vascular and other tissues. Prostaglandins 25:591–599

    Google Scholar 

  • Piper PJ, Letts LG, Tippins JR, Barnett K (1983b) Generation of a substance with the biological properties of a leukotriene from porcine vascular tissue. In: Piper PJ (ed) Leukotrienes and other lipoxygenase products. Research Studies Press, Chichester, pp 299–306

    Google Scholar 

  • Plaut M, Lichtenstein LM (1978) Histamine, 5-hydroxytryptamine SRS-A: discussion of type I hypersensitivity (anaphylaxis). In: Vane JR, Ferreira SH (eds) Inflammation. Springer, Berlin Heidelberg New York, pp 345–373 (Handbook of Pharmacology, vol 50/1)

    Google Scholar 

  • Ramwell PW, Leovey EMK, Sintetos AL (1977) Regulation of the arachidonic acid cascade. Biol Reprod 16:70–87

    Google Scholar 

  • Reimer KA, Jennings RB (1979) The changing anatomic reference base of evolving myocardial infarction. Underestimation of myocardial collateral blood flow and overestimation of experimental anatomic infarct size due to tissue edema, haemorrhage and acute inflammation. Circulation 60:866–876

    Google Scholar 

  • Ribeiro LGT, Brandon TA, Hopkins DG, Reduto LA, Taylor AA, Miller RR (1981) Prostacyclin in experimental myocardial ischemia effects on hemodynamics, regional myocardial blood flow, infarct size and mortality. Am J Cardiol 47:835–840

    Google Scholar 

  • Roberts R, DeMello V, Sobel BE (1976) Deleterious effects of methylprednisolone in patients with myocardial infarction. Circulation (Suppl 1) 53:I204–I206

    Google Scholar 

  • Robertson RM, Robertson D, Friesinger GC, Timmons S, Hawiger J (1980) Platelet aggregates in peripheral and coronary sinus blood in patients with spontaneous coronary artery spasm. Lancet 2:829–831

    Google Scholar 

  • Robertson RM, Robertson D, Roberts LJ, Maas RL, FitzGerald GA, Friesinger GC, Oates JA (1981) Thromboxane A2 in vasotonic angina pectoris. Evidence for direct measurements and inhibitor trials. N Engl J Med 304:998–1003

    Google Scholar 

  • Romson JL, Haack DW, Abrams GD, Lucchesi BR (1981) Prevention of occlusive coronary artery thrombosis by prostacyclin infusion in the dog. Circulation 64:906–914

    Google Scholar 

  • Romson JL, Hook B, Rigot V, Swanson D, Lucchesi B (1982a) Effect of ibuprofen on the accumulation of 111-In leukocytes and platelets in infarcted dog myocardium. Fed Proc 41:8752

    Google Scholar 

  • Romson JL, Hook B, Kunkel S, Abrams G, Lucchesi BR (1982b) Reduction of myocardial infarct size by neutrophil depletion in the dog. Circulation (Suppl 2) 66:337

    Google Scholar 

  • Romson JL, Bush LR, Jolly SR, Lucchesi BR (1982c) Cardioprotective effects of ibuprofen in experimental regional and global myocardial ischemia. J Cardiovasc Pharmacol 4:187–196

    Google Scholar 

  • Romson JL, Hook BG, Kunkel SL, Abrams GD, Schork MA, Lucchesi BR (1983a) Reduction of the extent of ischemic myocardial injury by neutrophil depletion in the dog. Circulation 67:1016–1023

    Google Scholar 

  • Rosmon JL, Hook BG, Lucchesi BR (1983b) Potentiation of the antithrombotic effect of prostacyclin by simultaneous administration of aminophylline in a canine model of coronary artery thrombosis. J Pharmacol Exp Ther 227:288–294

    Google Scholar 

  • Rösen R, Rösen P, Ohlendorf R, Schrör K (1981) Prostacyclin prevents ischemiainduced increase of lactate and cyclic AMP in ischemic myocardium. Eur J Pharmacol 69:489–491

    Google Scholar 

  • Rösen P, Rösen R, Hohl C, Reinauer H, Klaus W (1984) Reduced transcoronary exchange and prostaglandin synthesis in diabetic rat heart. Am J Physiol 247:H563–H569

    Google Scholar 

  • Roth DM, Lefer AM (1983) Studies on the mechanism of leukotriene induced coronary artery constriction. Prostaglandins 26:573–581

    Google Scholar 

  • Roy L, Knapp HR, Robertson RM, FitzGerald GA (1983) Endogenous prostacyclin (PGI2) biosynthesis is stimulated by cardiac catheterization (CC) and angiography (A) in man. Circulation (Suppl 3) 68:III-104

    Google Scholar 

  • Sakai K, Ito T, Ogawa K (1982) Role of endogenous prostacyclin and thromboxane A2 in the ischemic canine heart. J Cardiovasc Pharmacol 4:129–135

    Google Scholar 

  • Salzman EW (1977) Interrelation of prostaglandin endoperoxide (prostaglandin G2) and cyclic 3′5′-adenosine monophosphate in human blood platelets. Biochim Biophys Acta 499:48–60

    Google Scholar 

  • Salzman PM, Salmon JA, Moncada S (1980) Prostacyclin and thromboxane A2 synthesis by rabbit pulmonary artery. J Pharmacol Exp Ther 215:240–247

    Google Scholar 

  • Samuelsson B (1983) Leukotrienes: Mediators of immediate hypersensitivity reactions and inflammation. Science 220:568–575

    Google Scholar 

  • Samuelsson B, Granström E, Green K, Hamberg M, Hammarström S (1975) Prostaglandins. Annu Rev Biochem 44:669–695

    Google Scholar 

  • Samuelsson B, Goldyne M, Granström E, Hamberg M, Hammarström S, Malmsten C (1978) Prostaglandins and thromboxanes. Annu Rev Biochem 47:997–1029

    Google Scholar 

  • Samuelsson B, Borgeat P, Hammarström S, Murphy RC (1979) Introduction of a nomenclature: Leukotrienes. Prostaglandins 17:785–787

    Google Scholar 

  • Sanders TAB, Naismith DJ, Haines AP, Vickers M (1980) Cod-liver oil, platelet fatty acids, and bleeding time. Lancet 1:1189

    Google Scholar 

  • Scherhag R, Kramer HJ, Düsing R (1982) Dietary administration of eicosapentaenoic acid and linolenic acid increases arterial blood pressure and suppresses vascular prostacyclin synthesis in the rat. Prostaglandins 23:369–382

    Google Scholar 

  • Schmidt B, Flesch I, Ecker B, Hovestadt I, Ferber E (1984) Membrane phospholipid changes during macrophage activation. Agents Actions 15:21–27

    Google Scholar 

  • Scholtholt J, Birringer H, Fiedler VB, Schölkens B (1981) Effect of prostacyclin (PGI2) and adenosine (ASN) on total and regional blood flow of isolated, collateralized dog hearts. Basic Res Cardiol 76:313–327

    Google Scholar 

  • Schrör K (1978) Prostaglandin D2 (PGD2) — a potent coronary vasoconstrictor agent in the guinea pig isolated heart. Naunyn Schmiedebergs Arch Pharmacol 302:61–62

    Google Scholar 

  • Schrör K, Krebs R (1976) On the action of PGE2 on coronary vessels. A comparative study with adenosine. Naunyn Schmiedebergs Arch Pharmacol 293:R27

    Google Scholar 

  • Schrör K, Moncada S (1979) Effects of prostacyclin on coronary circulation, heart rate and myocardial contractile force in isolated hearts of guinea pig and rabbit — comparison with prostaglandin E2. Prostaglandins 17:367–373

    Google Scholar 

  • Schrör K, Rösen P (1979) Prostacyclin (PGI2) decreases the cyclic AMP level in coronary arteries. Naunyn Schmiedebergs Arch Pharmacol 306:101–103

    Google Scholar 

  • Schrör K, Moncada S, Ubatuba FB, Vane JR (1978) Transformation of arachidonic acid and prostaglandin endoperoxides by the guinea pig heart. Formation of RCS and prostacyclin. Eur J Pharmacol 47:103–114

    Google Scholar 

  • Schrör K, Link HB, Rösen R, Klaus W, Rösen P (1980a) Prostacyclin-induced coronary vasodilatation. Interactions with adenosine, cyclic AMP, and energy charge in the rat heart in vitro. Eur J Pharmacol 64:341–348

    Google Scholar 

  • Schrör K, Rösen P, Link HB, Rösen P (1980b) Physiological and biochemical parameters of prostacyclin action on the heart and the coronary vasculature. Adv Prostaglandin Thromboxane Res 7:625–630

    Google Scholar 

  • Schrör K, Addicks K, Darius H, Ohlendorf R, Rösen P (1981a) PGI2 inhibits ischemiainduced platelet activation and prevents myocardial damage by inhibition of catecholamine release from adrenergic nerve terminals. Evidence for cAMP as common denominator. Thromb Res 21:175–180

    Google Scholar 

  • Schrör K, Grodzinska L, Darius H (1981b) Stimulation of coronary vascular prostacyclin and inhibition of human thromboxane A2 after low-dose-nitroglycerin. Thromb Res 23:59–67

    Google Scholar 

  • Schrör K, Köhler P, Müller M, Peskar BA, Rösen P (1981c) Prostacyclin-thromboxane interactions in the platelet-perfused in vitro heart. Am J Physiol 241:H18–H25

    Google Scholar 

  • Schrör K, Ohlendorf R, Darius H (1981d) Beneficial effects of a new carbacyclin derivative, ZK 36374, in acute myocardial ischemia. J Pharmacol Exp Ther 219:243–249

    Google Scholar 

  • Schrör K, Darius H, Ohlendorf R, Matzky R, Klaus W (1982) Dissociation of antiplatelet effects from myocardial cytoprotective activity during acute myocardial ischemia in cats by a new carbacyclin derivative (ZK 36374). J Cardiovasc Pharmacol 4:554–561

    Google Scholar 

  • Schumacher WA, Lucchesi BR (1983) Effect of thromboxane synthetase inhibitor UK-37,248 (dazoxiben) upon platelet aggregation, coronary artery thrombosis and vascular reactivity. J Pharmacol Exp Ther 227:790–796

    Google Scholar 

  • Schwartz CJ (1982) Thrombosis in the pathogenesis of sudden cardiac death and myocardial infarction. In: Oates JA (ed) Prostaglandins and the cardiovascular system. Raven, New York, pp 1–14

    Google Scholar 

  • Scott-Miller AM, McMillan RM (1983) Aggregation and degranulation in human neutrophils: Do lipoxygenase metabolites play a role? In: Piper PJ (ed) Leukotrienes and other lipoxygenase products. Research Studies Press, Chichester, pp 255–256

    Google Scholar 

  • Shaw JO, Printz MP, Hirabayashi K, Henson PM (1978) Role of prostaglandin synthesis in rabbit platelet activation induced by basophil-derived platelet-activating factor. J Immunol 121:1939–1945

    Google Scholar 

  • Shaw JO, Klusick SJ, Hanahan DJ (1981) Activation of rabbit platelet phospholipase and thromboxane synthesis by 1-O-hexadecyl/octadecyl-2-acetyl-sn-glyceryl-3-phosphorylcholine (platelet activating factor). Biochim Biophys Acta 663:222–229

    Google Scholar 

  • Shea MJ, Driscoll EM, Romson JL, Pitt B, Lucchesi BR (1984a) Effect of OKY-1581, a thromboxane synthetase inhibitor, on coronary thrombosis in the conscious dog. Eur J Pharmacol 105:285–291

    Google Scholar 

  • Shea MJ, Driscoll EM, Romson JL, Pitt B, Lucchesi BR (1984b) The beneficial effects of nafazatrom (BAYg6575) on experimental coronary thrombosis. Am Heart J 107:629–637

    Google Scholar 

  • Sherry S (1982) Effect of prostaglandin-mediated platelet-suppressant drugs on acute cardiovascular catastrophes. In: Oates JA (ed) Prostaglandins and the cardiovascular system. Raven, New York, pp 173–210

    Google Scholar 

  • Sherry S (1983) Role of platelet-active drugs in coronary artery disease. Cardiovasc Clin 14:173–189

    Google Scholar 

  • Shimamoto T (1978) Stroke and heart attack induced experimentally by thromboxane A2 in rabbits and effect of EG 626, a thromboxane A2 antagonist. In: Wissler RW et al. (eds) International Symposium: State of prevention and therapy in human artherosclerosis and in animal models. Westdeutscher Verlag, Colognes, pp 139–152

    Google Scholar 

  • Siess W, Roth P, Scherer B, Kurzmann I, Böhlig B, Weber PC (1980) Platelet-membrane fatty acids, platelet aggregation, and thromboxane formation during a mackerel diet. Lancet 1:441–444

    Google Scholar 

  • Silberbauer K, Schernthaner G, Sinzinger H, Piza-Katzer H, Winter M (1979) Decreased vascular prostacyclin in juvenile-onset diabetes. N Engl J Med 300:366–367

    Google Scholar 

  • Sinzinger H, Feigl W, Silberbauer K (1979) Prostacyclin generation in atherosclerotic arteries. Lancet 2:469

    Google Scholar 

  • Sinzinger H, Scherntaner G, Kaliman J (1981) Sensitivity of platelets to prostaglandins in coronary heart disease and angina pectoris. Prostaglandins 22:773–781

    Google Scholar 

  • Sinzinger H, O'Grady J, Fitscha P, Kaliman J (1984) Extremely-low-dose aspirin (one milligram per day) renders human platelets more sensitive to antiaggregation prostaglandins. N Engl J Med 311:1052

    Google Scholar 

  • Smirnov IE, Mentz PR, Markov CM (1980) Effects of prostacyclin on coronary blood flow and cardiac activity in normotensive and spontaneously hypertensive rats. Adv Prostaglandin Thromboxane Res 7:631–633

    Google Scholar 

  • Smith EF III, Lefer AM (1981) Stabilization of cardiac lysosomal and cellular membranes in protection of ischemic myocardium due to coronary occlusion: Efficacy of the nonsteroidal anti-inflammatory agent, naproxen. Am Heart J 101:394–402

    Google Scholar 

  • Smith EF III, Carrow BA, Lefer AM (1980) Effects of flurbiprofen on myocardial cell damage during acute myocardial ischemia. Res Commun Chem Pathol Pharmacol 28:413–433

    Google Scholar 

  • Smith EF III, Lefer AM, Nicolaou KC (1981a) Mechanisms of coronary vasoconstriction induced by carbocylic thromboxane A2. Am J Physiol 240:H493–497

    Google Scholar 

  • Smith EF III, Lefer AM, Aharony D, Smith JB, Magolda RL, Claremon D, Nicolaou KC (1981b) Carbocyclic thromboxane A2: Aggravation of myocardial ischemia by a new synthetic thromboxane A2 analog. Prostaglandins 21:443–456

    Google Scholar 

  • Smith EF III, Gallenkämper W, Beckmann R, Thomsen T, Mannesmann G, Schrör K (1984) Early and late administration of a PGI2-analogue, ZK36374 (iloprost): effects on myocardial preservation, collateral blood flow and infarct size. Cardiovasc Res 18:163–173

    Google Scholar 

  • Smith JB, Jubiz W (1981) OKY-1581: a selective inhibitor of thromboxane synthesis in vivo and in vitro. Prostaglandins 22:353–363

    Google Scholar 

  • Smith JB, Willis AL (1971) Aspirin selectively inhibits prostaglandin production in human platelets. Nature (New Biol) 231:235–237

    Google Scholar 

  • Smith WL, Lands WEM (1972) Oxygenation of polyunsaturated fatty acids during prostaglandin biosynthesis by sheep vesicular gland. Biochemistry 11:3276–3285

    Google Scholar 

  • Smitherman TC, Milam M, Woo J, Willerson JT, Frenkel EP (1981) Elevated beta thromboglobulin in peripheral venous blood of patients with acute myocardial ischemia: direct evidence for enhanced platelet reactivity in vivo. Am J Cardiol 48:395–402

    Google Scholar 

  • Sobel BE, Corr PB (1979) Biochemical mechanisms potentially responsible for lethal arrhythmias induced by ischemia: the lysolipid hypothesis. Adv Cardiol 26:76–85

    Google Scholar 

  • Sommers HM, Jennings RB (1964) Experimental acute myocardial infarction. Histologic and histochemical studies of early myocardial infarcts induced by temporary or permanent occlusion of a coronary artery. Lab Invest 13:1491–1503

    Google Scholar 

  • Spath JA, Lane DL, Lefer AM (1974) Protective action of methylprednisolone on the myocardium during experimental myocardial ischemia in the cat. Circ Res 35:44–51

    Google Scholar 

  • Spector AA, Kaduce TL, Figard PH, Norton KC, Haak JC, Czervionke RL (1983) Eicosapentaenoic acid and prostacyclin production by cultured human endothelial cells. J Lipid Res 24:1595–1604

    Google Scholar 

  • Stein I, Wecksell I (1970) Cardiac disease accompanying allergic drug reactions. J Allergy 45:48–54

    Google Scholar 

  • Stimler NP, Bloor CM, Hugli TE, Wykle RL, McCall CE, O'Flaherty JT (1981) Anaphylactic actions of platelet-activating factor. Am J Pathol 105:64–69

    Google Scholar 

  • Struijck CB, Beerthuis RL, Pabon HJJ, Van Dorp DA (1966) specificity of the enzyme conversion of polyunsaturated fatty acids into prostaglandins. Recl Trav Chim Pays Bas 85:1233–1250

    Google Scholar 

  • Subbiah MTR, Deitemeyer D (1980) Altered synthesis of prostaglandins in platelet and aorta from spontaneously diabetic Wistar rats. Biochem Med 23:231–235

    Google Scholar 

  • Sun FF (1977) Biosynthesis of thromboxanes in human platelets. I. Characterization and assay of thromboxane synthetase. Biochem Biophys Res Commun 74:1432–1440

    Google Scholar 

  • Svensson J, Hamberg M (1976) Thromboxane A2 and prostaglandin H2: Potent stimulators of the swine coronary artery. Prostaglandins 12:943–950

    Google Scholar 

  • Svensson J, Hamberg M, Samuelsson B (1975) Prostaglandin endoperoxides IX. Characterization of rabbit aorta contracting substance (RCS) from guinea pig lung and human platelets. Acta Physiol Scand 94:222–228

    Google Scholar 

  • Szczeklik A, Gryglewski RJ (1980) Low density lipoproteins (LDL) are carriers for lipid peroxides and invalidate prostacyclin (PGI2) biosynthesis in arteries. Artery 7:488–495

    Google Scholar 

  • Szczeklik A, Gryglewski RJ, Musial J, Grodzinska L, Serwónska M, Marcinkiewicz E (1978a) Thromboxane generation and platelet aggregation in survivals of myocardial infarction. Thromb Haemost 40:66–74

    Google Scholar 

  • Szczeklik A, Gryglewski RJ, Nizánkowski R, Musial J, Pieton R, Mruk J (1978b) Circulatory and antiplatelet effects of intravenous prostacyclin in healthy man. Pharmacol Res Commun 10:545–556

    Google Scholar 

  • Szczeklik A, Szczeklik J, Nizankowski R, Gluszko P (1980) Prostacyclin for acute coronary insufficiency. Artery 8:7–11

    Google Scholar 

  • Szczeklik A, Gryglewski RJ, Domagala B, Zmuda A, Hartwich J, Wozny E, Grzywacz M, Madej J, Gryglewska T (1981) Serum lipoproteins, lipid peroxides and prostacyclin biosynthesis in patients with coronary heart disease. Prostaglandins 12:795–807

    Google Scholar 

  • Tada M, Kuzuya T, Inoue M, Kodama K, Mishima M, Yamada M, Inui M, Abe H (1981) Elevation of thromboxane B2 levels in patients with classic and variant angina pectoris. Circulation 64:1107–1115

    Google Scholar 

  • Tanabe M, Terashita ZI, Fujiwara S, Shimamoto N, Gota N, Nishikawa K, Hirata M (1982) Coronary circulatory failure and thromboxane A2 release during coronary occlusion and reperfusion in anaesthetized dogs. Cardiovasc Res 16:99–106

    Google Scholar 

  • Tappel AL, Lundberg WO, Boyer PD (1953) Effect of temperature and antioxidants upon the lipoxidase-catalyzed oxidation of sodium linoleate. Arch Biochem Biophys 42:293–304

    Google Scholar 

  • Tateson JE, Moncada S, Vane JR (1977) Effect of prostacyclin (PGX) on cyclic AMP concentrations in human platelets. Prostaglandins 13:389–397

    Google Scholar 

  • Taylor GW, Morris HR (1983) Lipoxygenase pathways. Br Med Bull 39:219–222

    Google Scholar 

  • Terano T, Salmon JA, Moncada S (1984a) Biosynthesis and biological activity of leukotriene B5. Prostaglandins 27:217–232

    Google Scholar 

  • Terano T, Salmon JA, Moncada S (1984b) Effect of orally administered eicosapentaenoic acid (EPA) on the formation of leukotriene B4 and leukotriene B5 by rat leukocytes. biochem Pharmacol 33:3071–3076

    Google Scholar 

  • Terashita ZI, Fukui H, Nishikawa K, Hirata M, Kikuchi S (1978) Coronary vasospastic action of thromboxane A2 in isolated, working guinea pig hearts. Eur J Pharmacol 53:49–56

    Google Scholar 

  • Terashita ZI, Fukui H, Hirata M, Terao S, Ohkawa S, Nishikawa K, Kikuchi S (1981) Coronary vasoconstriction and PGI2 release by leukotrienes in isolated guinea pig hearts. Eur J Pharmacol 73:357–361

    Google Scholar 

  • Thaulow E (1983) Platelet function in blood from the coronary sinus in patients with arteriosclerotic heart disease. Thromb Haemost 50:629–632

    Google Scholar 

  • Thaulow E, Dale J, Myhre E (1984) Effects of a selective thromboxane synthetase inhibitor, dazoxiben, and of acetylsalicylic acid on myocardial ischemia in patients with coronary artery disease. Am J Cardiol 53:1255–1258

    Google Scholar 

  • Toda N (1984) Responses of human, monkey and dog coronary arteries in vitro to carbocyclic thromboxane A2 and vasodilators. Br J Pharmacol 83:399–408

    Google Scholar 

  • Trachte GJ, Lefer AM, Aharony D, Smith JB (1979) Potent constriction of cat coronary arteries by hydroperoxides of arachidonic acid and its blockade by anti-inflammatory agents. Prostaglandins 18:909–914

    Google Scholar 

  • Tremoli E, Folco GC, Agradi E, Galli C (1979) Platelet thromboxanes and serum cholesterol. Lancet 1:107–108

    Google Scholar 

  • Tremoli E, Maderna P, Collis S, Morazzoni G, Sirtori M, Sirtori CR (1984) Increased platelet sensitivity and thromboxane B2 formation in type II hyperlipoproteinaemic patients. Eur J Clin Invest 14:329–333

    Google Scholar 

  • Turner SR, Tainer JA, Lynn WS (1975) Biogenesis of chemotactic molecules by the arachidonate lipoxygenase system of platelets. Nature 257:680–681

    Google Scholar 

  • Tuvemo T, Strandberg K, Hamberg M, Samuelsson B (1976) Maintenance of the tone of the human umbilical artery by prostaglandin and thromboxane formation. Adv Prostaglandin Thromboxane Res 1:425–428

    Google Scholar 

  • Tyler HM, Saxton CAPD, Parry MJ (1981) Administration to man of UK-37,248-01, a selective inhibitor of thromboxane synthetase. Lancet 1:629–632

    Google Scholar 

  • Ubatuba FB, Moncada S, Vane JR (1979) The effect of prostacyclin (PGI2) on platelet behaviour, thrombus formation in vivo and bleeding time. Thromb Haemost 41:425–435

    Google Scholar 

  • Uchida Y, Hanai T, Hasegawa K, Kawamura K, Oshima T (1983) Recanalization of obstructed coronary artery by intracoronary administration of prostacyclin in patients with acute myocardial infarction. Adv Prostaglandin Thromboxane Leukotriene Res 11:377–383

    Google Scholar 

  • Van der Giessen WJ, Serruys PW, Stoel I, Hugenholtz PG, de Leeuw PW, van Vliet HHDM, Deckmyn H, Vermylen J (1983) Acute effect of cigarette smoking on cardiac prostaglandin synthesis and platelet behaviour in patients with coronary heart disease. Adv Prostaglandin Thromboxane Leukotriene Res 11:359–364

    Google Scholar 

  • Van der Ouderaa FJ, Buytenhek M, Nugteren DH, Van Dorp DA (1977) Purification and characterization of prostaglandin endoperoxide synthetase from sheep vesicular glands. Biochim Biophys Acta 487:315–331

    Google Scholar 

  • Van Dorp DA (1966) The biosynthesis of prostaglandins. Mem Soc Endocrinol 14:39–47

    Google Scholar 

  • Van Dorp DA, Beerthuis RK, Nugteren DH, Vonkeman H (1964) The biosynthesis of prostaglandins. Biochim Biophys Acta 90:204–207

    Google Scholar 

  • Vane JR (1971) Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nature (New Biol) 231:232–235

    Google Scholar 

  • Vermylen J, Chamone DAF, Verstraete M (1979) Stimulation of prostacyclin release from vessel wall by BAYg6575, an antithrombotic compound. Lancet 1:518–520

    Google Scholar 

  • Vesterqvist O, Gréen K (1984) Urinary excretion of 2,3-dinor-thromboxane B2 in man under normal conditions, following drugs and during some pathological conditions. Prostaglandins 27:627–644

    Google Scholar 

  • Voelkel NF, Worthen S, Reeves JT, Henson PM, Murphy RC (1982) Nonimmunological production of leukotrienes induced by platelet-activating factor. Science 218:286–288

    Google Scholar 

  • Vogel WM, Zannoni VG, Abrams GD, Lucchesi BR (1977) Inability of methylprednisolone sodium succinate to decrease infarct size or preserve enzyme activity measured 24 hours after coronary occlusion in the dog. Circulation 55:588–595

    Google Scholar 

  • Vogt W (1978) Role of phospholipase A2 in prostaglandin formation. Adv Prostaglandin Thromboxane Res 3:89–95

    Google Scholar 

  • Von Euler US (1934) Zur Kenntnis der pharmakologischen Wirkungen von Nativsekretion und Extrakten männlicher akzessorischer Geschlechtsdrüsen. Arch Exp Pathol Pharmakol 175:78–84

    Google Scholar 

  • Von Euler US (1935) Über die spezifische blutdurcksenkende Substanz des menschlichen Prostata-und Samenblasensekretes. Klin Wochenschr 33:1182–1183

    Google Scholar 

  • Von Euler US (1937) On the specific vaso-dilating and plain muscle stimulating substances from accessory genital glands in man and certain animals (prostaglandin and vesiglandin). J Physiol (Lond) 88:213–234

    Google Scholar 

  • Vonkeman H, van Dorp DA (1968) The action of prostaglandin synthetase on 2-arachidonyl-lecithin. Biochim Biophys Acta 164:430–432

    Google Scholar 

  • Wallis J, Moses JW, Borer JS, Weksler B, Goldberg HL, Fisher J, Kase M, Tack-Goldman K, Carter J, Calle S (1982) Coronary blood flow in coronary artery disease: heparin-induced potentiation caused by prostaglandin release. Circulation (Suppl 2) 66:II-263

    Google Scholar 

  • Wang HH, Kulkarni PS, Eakins KE (1980) Effect of prostaglandins and thromboxane A2 on the coronary circulation of adult dogs and puppies. Eur J Pharmacol 66:31–41

    Google Scholar 

  • Warrington SJ, O'Grady J (1980) Cardiovascular effects of prostacyclin in man. Adv Prostaglandin Thromboxane Res 7:619–624

    Google Scholar 

  • Weiss ES, Ahmed SA, Thakur ML, Welch MJ, Coleman RE, Sobel BE (1977) Imaging of the inflammatory response in ischemic canine myocardium with 111-indium-labelled leukocytes. Am J Cardiol 40:195–199

    Google Scholar 

  • Weksler BB, Marcus AJ, Jaffe EA (1977) Synthesis of prostaglandin I (prostacyclin) by cultured human and bovine endothelial cells. Proc Natl Acad Sci USA 74:3922–3926

    Google Scholar 

  • Welman E, Selwyn AP, Fox KM (1979) Lysosomal and cytosolic enzyme release in acute myocardial infarction: effects of methylprednisolone. Circulation 59:730–733

    Google Scholar 

  • Welton AF, Hope WC, Tobias LD, Hamilton JG (1981) Inhibition of antigen induced histamine release and thromboxane synthetase by FPL 55712. A specific SRS-A antagonist? Biochem Pharmacol 30:1378–1382

    Google Scholar 

  • Weltzien HU (1979) Cytolytic and membrane-perturbing properties of lysophosphatidylcholine. Biochim Biophys Acta 559:259–287

    Google Scholar 

  • Wennmalm Å (1979) Prostaglandin-mediated inhibition of noradrenaline release. VI. On the intra-cardiac source of prostaglandins released from isolated rabbit hearts. Acta Physiol Scand 105:254–256

    Google Scholar 

  • Wennmalm Å (1980) Nicotine inhibits hypoxia-and arachidonate-induced release of prostacyclin-like activity in rabbit hearts. Br J Pharmacol 69:545–549

    Google Scholar 

  • Wennmalm Å (1982) Interaction of nicotine and prostaglandins in the cardiovascular system. Prostaglandins 23:139–144

    Google Scholar 

  • Wennmalm Å (1984) Prostacyclin (PGI2) mediates the coronary vasodilator effect of adenosine (Abstr). In: Neri Serneri GG, Masotti G, Gensini GF (eds) Platelets prostaglandins and the cardiovascular system. Boehringer-Ingelheim, Florence, p 200

    Google Scholar 

  • Wennmalm Å, Henriksson P, Ehag O (1984) Limitation of myocardial infarct size in humans with prostacyclin (Abstr). In: Neri Serneri GG, Masotti G, Gensini GF (eds) Platelets prostaglandins and the cardiovascular system. Boehringer-Ingelheim, Florence, p 166

    Google Scholar 

  • Went S, Lissák K (1935) Histamin-und Proteinwirkung am normalen und sensibilisierten Meerschweinchenherz. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol 179:609–615

    Google Scholar 

  • Whittle BJR, Moncada S (1983) Pharmacological interactions between prostacyclin and thromboxanes. Br Med Bull 39:232–238

    Google Scholar 

  • Whittle BJR, Moncada S, Vane JR (1978) Comparison of the effects of prostacyclin (PGI2) prostaglandin E1 and D2 on platelet aggregation in different species. Prostaglandins 16:373–388

    Google Scholar 

  • Whittle BJR, Moncada S, Whiting F, Vane JR (1980) Carbacyclin — a potent stable prostacyclin analogue for the inhibition of platelet aggregation. Prostaglandins 19:605–627

    Google Scholar 

  • Wilcox HB, Andrus EC (1938) Anaphylaxis in the isolated heart. J Exp Med 67:169–180

    Google Scholar 

  • Wilkerson RD, Conran PB (1982) Ibuprofen reduces infarct size and ventricular arrhythmias after coronary occlusion (CAO). Fed Proc 41:1737

    Google Scholar 

  • Wittenberg HR, Wölbling RH, Aehringhaus U, Patrono C, Peskar BM, Peskar BA (1983) Release of slow-reacting substance of anaphylaxis from guinea pig heart and vascular tissue. In: Piper PJ (ed) Leukotrienes and other lipoxygenase products. Research Studies Press, Chichester, pp 121–127

    Google Scholar 

  • Wittmann G, Weinerowski P, Aehringhaus U, Peskar BA (1984) Effect of muscarinic receptor stimulation and of prostaglandins (PG) on release of leukotriene C4 (LTC4)-like immunoreactivity in cardiac anaphylaxis. Naunyn Schmiedebergs Arch Pharmacol (Suppl) 325:R36

    Google Scholar 

  • Wlodawer P, Hammarström S (1978) Thromboxane synthetase from bovine lung — solubilization and partial purification. Biochem Biophys Res Commun 80:525–532

    Google Scholar 

  • Wölbling RH, Aehringhaus U, Peskar BM, Peskar BA (1983) Release of slow reacting substance of anaphylaxis from layers of guinea pig aorta. Prostaglandins 25:823–828

    Google Scholar 

  • Woodman OL, Dusting GJ (1983) Coronary vasoconstriction induced by leukotrienes in the anaesthetized dog. Eur J Pharmacol 86:125–128

    Google Scholar 

  • Wynalda MA, Fitzpatrick FA (1980) Albumins stabilize prostaglandin I2. Prostaglandins 20:853–861

    Google Scholar 

  • Yoshimoto T, Yamamoto S, Okuma M, Hayaishi O (1977) Solubilization and resolution of thromboxane synthesizing system from microsomes of bovine blood platelets. J Biol Chem 252:5871–5874

    Google Scholar 

  • Yui Y, Hattori R, Takatsu Y, Nakajima H, Wakabayashi A, Kawai C, Kayama N, Hiraku S, Inagawa T, Tsubojima M, Naito J (1984) Intravenous infusion of a selective inhibitor of thromboxane A2 synthetase in man: influence on thromboxane B2, and 6-keto-prostaglandin F1α levels and platelet aggregation. Circulation 70:599–605

    Google Scholar 

  • Zavecz JH, Levi R (1977) Separation of primary and secondary cardiovascular events in systemic anaphylaxis. Circ Res 40:15–19

    Google Scholar 

  • Ziboh VA, Maruta H, Lord J, Cagle WD, Lucky W (1979) Increased biosynthesis of thromboxane A2 in diabetic platelets. Eur J Clin Invest 9:223–228

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag

About this chapter

Cite this chapter

Simmet, T., Peskar, B.A. (1986). Eicosanoids and the coronary circulation. In: Reviews of Physiology, Biochemistry and Pharmacology, Volume 104. Reviews of Physiology, Biochemistry and Pharmacology, vol 104. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0031012

Download citation

  • DOI: https://doi.org/10.1007/BFb0031012

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-15940-7

  • Online ISBN: 978-3-540-39672-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics