Skip to main content

The cellular processing of lysosomal enzymes and related proteins

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology, Volume 87

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 87))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achord DT, Brot FE, Sly WS (1977) Inhibition of the rat clearance system for agalacto-orosomucoid by yeast mannans and by mannose. Biochem Biophys Res Commun 77:409–415

    Article  PubMed  Google Scholar 

  • Ahearn MJ, Hamilton TH, Biesele JJ (1966) Serum-induced formation of lysosomes in HeLa cells: a process sensitive to actinomycin D. Proc Natl. Acad Sci USA 55:852–857

    PubMed  Google Scholar 

  • Alhadeff JA, Freeze H (1977) Carbohydrate composition of purified human liver α-L-fucosidase. Mol Cell Biochem 18:33–37

    Article  PubMed  Google Scholar 

  • Allison AC, Davies P (1972) The control of lysosomal enzyme synthesis and the effects of steroids. In: Rabin BR, Freedman RB (eds) Effects of drugs on cellular control mechanisms. University Park Press, Baltimore, pp 49–67

    Google Scholar 

  • Alpers DH (1972) The relation of size to the relative rates of degradation of intestinal brush border proteins. J Clin Invest 51:2621–2630

    PubMed  Google Scholar 

  • Amenta JS, Baccino FM, Sargus MJ (1976) Cell protein degradation in cultured rat embryo fibroblasts: suppression by vinblastine of the enhanced proteolysis by serum-deficient medium. Biochim Biophys Acta 451:511–516

    PubMed  Google Scholar 

  • Amenta JS, Baccino FM, Sargus MJ (1977) Inhibition of cell protein degradation by microtubular inhibition. In: Turk V, Marks N (eds) Intracellular protein catabolism II. Plenum, New York, pp 27–42

    Google Scholar 

  • Amenta JS, Sargus MJ, Baccino FM (1978) Inhibition of basal protein degradation in rat embryo fibroblasts by cycloheximide: correlation with activation of lysosomal proteases. J Cell Physiol 97:267–284

    Article  PubMed  Google Scholar 

  • Amherdt M, Harris V, Renold AE, Orci L, Unger RH (1974) Hepatic autophagy in uncontrolled experimental diabetes and its relationship to insulin and glucagon. J Clin Invest 54:188–193

    PubMed  Google Scholar 

  • Arborgh BAM, Ericsson JLE, Clauman H (1973) Method for the isolation of iron-loaded lysosomes from rat liver. FEBS Lett 32:190–194

    Article  PubMed  Google Scholar 

  • Arborgh BAM, Glauman H, Ericsson JLE (1974) Studies on iron loading of rat liver lysosomes: effect on the liver and distribution and fate of iron; chemical and enzymatic composition. Lab Invest 30:664–673, 674–680

    PubMed  Google Scholar 

  • Arsenis C, Touster O (1967) The partial resolution of acid phosphatase of rat liver lysosomes into a nucleotidase and a sugar phosphate phosphohydrolase. J Biol Chem 242:3400–3401

    Google Scholar 

  • Arsenis C, Touster O (1968) Purification and properties of an acid nucleotidase from rat liver lysosomes. J Biol Chem 243:5702–5708

    PubMed  Google Scholar 

  • Ashwell G, Morell AG (1974) The role of surface glycoproteins in hepatic recognition and transport of circulating glycoproteins. Adv Enzymol 41:99–128

    PubMed  Google Scholar 

  • Axline SG, Cohn ZA (1970) In vitro induction of lysosomal enzymes by phagocytosis. J Exp Med 131:1239–1260

    Article  PubMed  Google Scholar 

  • Bach G, Bargal R, Cantz M (1979) I-Cell disease: deficiency of extracellular hydrolase phosphorylation. Biochem Biophys Res Commun 91:976–981

    PubMed  Google Scholar 

  • Bainton DF, Farquhar MG (1968) Differences in enzyme content of azurophil and specific granules of polymorphonuclear leucocytes. I. Histochemical staining of bone marrow smears. II. Cytochemistry and electron microscopy of bone marrow cells. J Cell Biol 39:286–298, 299–317

    Article  PubMed  Google Scholar 

  • Bainton DF, Ullyot JL, Farquhar MG (1971) The development of neutrophilic polymorphonuclear leukocytes in human bone marrow: origin and content of azurophil and specific granules. J Exp Med 134:907–934

    Article  PubMed  Google Scholar 

  • Balasubramanian KA, Bachhawat BK (1975) Purification, properties and glycoprotein nature of arylsulphatase A from sheep brain. Biochim Biophys Acta 403:113–1121

    PubMed  Google Scholar 

  • Ballard FJ (1977) Intracellular protein degradation. Essays Biochem 13:1–37

    PubMed  Google Scholar 

  • Ballard FJ, Knowles SE (1977) Increased degradation of canavanine-containing proteins in hepatoma cells. In: Turk V, Marks N (eds) Intracellular protein catabolism II. Plenum, New York, pp 43–66

    Google Scholar 

  • Banerjee DK, Basu D (1974) Purification of normal urinary N-acetyl-β-hexosaminidase A by affinity chromatography. Biochem J 145:113–118

    Google Scholar 

  • Barrett AJ (1970) Cathepsin D: purification of isoenzymes from human and chicken liver. Biochem J 117:601–607

    PubMed  Google Scholar 

  • Barrett AJ (1972) Lysosomal enzymes. In: Dingle JT (ed) Lysosomes: a laboratory handbook. North-Holland, Amsterdam, pp 46–135

    Google Scholar 

  • Barrett AJ, Dean RT (1976) Enzymes of lysosomes. Fed Am Soc Exp Biol 317–324

    Google Scholar 

  • Barrett AJ, Kregar I, Turk V, Woessner JF (1977) Present knowledge of proteolytic enzymes and their inhibitors. In: Turk V, Marks N (eds) Intracellular proteins catabolism II. Plenum, New York

    Google Scholar 

  • Baudhuin P, Beaufay H, De Duve C (1965) Combined biochemical and morphological study of particulate fraction from rat liver: analysis of preparations enriched in lysosomes or in particles containing urate oxidase, D-amino acid oxidase, and catalase. J Biol Chem 26:219–243

    Google Scholar 

  • Beaufay H (1972) Methods for the isolation of lysosomes. In: Dingle JT (ed) Lysosomes: a laboratory handbook. North-Holland, Amsterdam, pp 1–45

    Google Scholar 

  • Belfiore F, Napoli E, Lovecchio LL, Rabuazzo AM (1973) Serum acid phosphatase activity in diabetes mellitus. Am J Med Sci 266:139–143

    PubMed  Google Scholar 

  • Belfiore F, Lovecchio LL, Napoli E, Borzi V (1974) Increased β-N-acetylglucosaminidase activity in diabetes mellitus. Clin Chem 20:1229–1230

    PubMed  Google Scholar 

  • Benassi G (1968) Effect of sucrose on the total acid phosphatase activity and the growth of LS cells. Exp Cell Res 50:159–166

    Article  PubMed  Google Scholar 

  • Bengt AM, Glaumann H, Ericsson JLE (1974) Studies on iron loading of rat liver lysosomes: effects on the liver and distributions and fate of iron. Lab Invest 30:664–673, 674–680

    PubMed  Google Scholar 

  • Bennett G, Leblond CP (1971) Passage of fucose-3H-label from the Golgi apparatus into dense and multivesicular bodies in the duodenal columnar cells and hepatocytes of the rat. J Cell Biol 15:875–881

    Article  Google Scholar 

  • Bennett G, Leblond CP, Haddad A (1974) Migration of glycoprotein from the Golgi apparatus to the surface of various cell types as shown by autoradiography after labeled fucose injection into rats. J Cell Biol 60:258–284

    Article  PubMed  Google Scholar 

  • Bentfeld ME, Bainton DF (1975) Cytochemical localization of lysosomal enzymes in rat megakary ocytes and platelets. J Clin Invest 56:1635–1649

    PubMed  Google Scholar 

  • Berger FG, Paigen K, Meisler MH (1978) Regulation of the rate of β-galactosidase synthesis by the Bgs and Bgt loci in the mouse. J Biol Chem 253:5280–5282

    PubMed  Google Scholar 

  • Bernacki RJ, Bosman HB (1971) The effects of sucrose and various salts on the growth and lysosomal enzyme activity of L5178Y cells. J Cell Sci 8:399–406

    PubMed  Google Scholar 

  • Blouin A, Bolender RP, Weibel ER (1977) Distribution of organelles and membranes between hepatocytes and nonhepatocytes in the rat liver parenchyma: a stereological study. J Cell Biol 72:441–455

    Article  PubMed  Google Scholar 

  • Bohley P, Kirschke H, Langner J, Riemann S, Wiederanders B, Ansorge S, Hannan H (1977) Primary reaction of intracellular protein catabolism In: Turk V, Marks N (eds) Intracellular protein catabolism II. Plenum, New York

    Google Scholar 

  • Bohley P, Kirschke H, Langner J, Riemann S, Wiederanders B, Ansorge S, Hannan H (1978) Protein catabolism in rat liver cells. In: Segal HL, Doyle DJ (eds) Protein turnover and lysosomal function. Academic Press, New York

    Google Scholar 

  • Bomback FM, Nagakawa S, Kumin S, Nitowsky HM (1976) Altered lysosomal glycohydrolase activities in juvenile diabetes mellitus. Diabetes 25:420–427

    PubMed  Google Scholar 

  • Bond JS (1971) A comparison of the proteolytic susceptibility of several rat liver enzymes. Biochem Biophys Res Commun 43:333–339

    Article  PubMed  Google Scholar 

  • Bond JS (1975) Correlation between in vivo and in vitro inactiviation of rat liver enzymes. In: Schimke RT, Katanuma N (eds) Intracellular protein turnover. Academic Press, New York, pp 281–293

    Google Scholar 

  • Brostrom CD, Jeffay HJ (1970) Protein catabolism in rat liver homogenates; a reevaluation of the energy requirements for protein catabolism. J Biol Chem 245:4001–4008

    PubMed  Google Scholar 

  • Brot FE, Bell CE, Sly WS (1978) Purification and porperties of β-glucuronidase from human placenta. Biochemistry 17:385–391

    Article  PubMed  Google Scholar 

  • Brown MS, Goldstein JL (1976) Receptor-mediated control of cholesterol metabolism. Science 191:150–154

    PubMed  Google Scholar 

  • Brown MS, Anderson RGW, Goldstein JL (1977) Mutations affecting the binding, internalization, and lysosomal hydrolysis of low density lipoprotein in cultured human fibroblasts, lymphocytes, and aortic smooth muscle cells. J Supramol Struct 6:85–94

    Article  PubMed  Google Scholar 

  • Byrd JC, Touster (1978) Reduced oligosaccharide from rat gland β-glucuronidase: preparation and partial characterization. Fed Proc 38:798

    Google Scholar 

  • Cantz M, Kresse M (1974) Sandhoff disease: Defective glycosaminoglycan catabolism in cultured fibroblasts and its correction by β-N-acetylhexosaminidase. Eur J Biochem 47:581–590

    Article  PubMed  Google Scholar 

  • Carmody PJ, Rattazzi MC (1974) Conversion of human hexosaminidase A to hexosaminidase “B” by crude vibrio cholera neuraminidase preparations: merthiolate is the active factor. Biochim Biophys Acta 371:117–125

    PubMed  Google Scholar 

  • Cho-Chung YS, Gullino PM (1973) Mammary tumor regression. VI. Synthesis and degradation of acid ribonuclease. J Biol Chem 248:4750–4755

    PubMed  Google Scholar 

  • Cohn ZA, Benson B (1965a) The in vitro differentiation of mouse nuclear phagocytes. II. The influence of serum on granule formation, hydrolase production, and pinocytosis. J Exp Med 121:835–848

    Article  PubMed  Google Scholar 

  • Cohn ZA, Benson B (1965b) The in vitro differentiation of mouse nuclear phagocytes. III. The reversibility of granule and hydrolytic enzyme formation and turnover of granule constituents. J Exp Med 121:455–467

    Article  Google Scholar 

  • Cohn ZA, Ehrenreich BA (1969) The uptake, storage, and intracellular hydrolysis of carbohydrates by macrophages. J Exp Med 129:201–226

    Article  PubMed  Google Scholar 

  • Cohn ZA, Fedorko ME (1969) The formation and fate of lysosomes. In: Dingle JT (ed) Lysosomes in biology and pathology, vol 1. North-Holland, Amsterdam, pp 43–63

    Google Scholar 

  • Cohn ZA, Parks E (1967) The regulation of pinocytosis in mouse macrophages. II. Factors inducing vesicle formation. J Exp Med 125:213–232

    Article  PubMed  Google Scholar 

  • Cochie J, May AJ, Levvy GA (1961) Mammalian glycosidases. 3. The intracellular localization of β-glucuronidase in different mammalian tissues. Biochem J 79:324–330

    PubMed  Google Scholar 

  • Davidson E, Poole B (1975) Fractionation of the rat liver enzymes that hydrolyze benzoyl-arginine-2-naphthylamide. Biochim Biophys Acta 397-437-448

    Google Scholar 

  • Davies M (1975) The heterogeneity of lysosomes. In: Dingle JT, Dean RT (eds) Lysosomes in biology and pathology, vol 4. North-Holland, Amsterdam, pp 305–348

    Google Scholar 

  • Davies P, Page RC, Allison AC (1974) Changes in cellular enzyme levels and extracellular release hydrolases in macrophages exposed to group A streptococcal cell wall substance. J Exp Med 139:1262–1282

    Article  PubMed  Google Scholar 

  • Dawson G, Stein AO (1970) Lactosyl ceramidosis: Catabolic enzyme defect of glycosphingolipid metabolism. Science 170:556–558

    PubMed  Google Scholar 

  • Dean RT (1975a) Turnover of lysosomal proteins and induction and distribution of rat liver proteinases, after treatment with triton WR-1339. Biochem Soc Trans 3:250–252

    PubMed  Google Scholar 

  • Dean RT (1975b) Lysosomal enzymes as agents of turnover of cytoplasmic proteins. Eur J Biochem 58:9–14

    Article  PubMed  Google Scholar 

  • Dean RT (1975c) Direct evidence of the importance of lysosomes in degradation of intracellular proteins. Nature 257:414–416

    Article  PubMed  Google Scholar 

  • Dean RT (1975d) Concerning a possible mechanism for selective capture of cytoplasmic proteins by lysosomes. Biochem Biophys Res Commun 67:604–609

    Article  PubMed  Google Scholar 

  • Dean RT (1975e) Multiple forms of lysosomal enzymes. In: Dingle JT, Dean RT (eds) Lysosomes in biology and pathology, vol 4. North-Holland, Amsterdam, pp 349–382

    Google Scholar 

  • Dean RT (1976) The roles of cathepsins B1 and D in the digestion of cytoplasmic proteins in vitro by lysosomal extracts. Biochem Biophys Res Commun 68:518–523

    Article  PubMed  Google Scholar 

  • Dean RT (1978) Lysosomal mechanism of protein degradation. In: Segal HL, Doyle DJ (eds) Protein turnover and lysosomal function. Academic Press, New York

    Google Scholar 

  • Dean RT, Barrett AJ (1976) Lysosomes. Essay Biochem 12:1–40

    Google Scholar 

  • De Duve C, Wattiaux R (1966) Functions of lysosomes. Annu Rev Physiol 28:435–492

    Article  PubMed  Google Scholar 

  • De Duve C, Pressman BC, Gianetto R, Wattiaux R, Applemans F (1955). Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat liver tissues. Biochem J 60:604–617

    PubMed  Google Scholar 

  • De Duve C, Debarsy T, Poole B, Trouet A, Tulkens P, van Hoof F (1974) Lysosomotropic agents. Biochem Pharmacol 23:2495–2531

    Article  PubMed  Google Scholar 

  • Dehlinger PJ, Schimke RT (1970) Effect of size on the relative rate of degradation of rat liver soluble protein. Biochem Biophys Res Commun 40: 1473–1480

    PubMed  Google Scholar 

  • Dehlinger PJ, Schimke RT (1971) Size distribution of membrane proteins of rat liver and their relative rates of degradation. J Biol Chem 246:2574–2583

    PubMed  Google Scholar 

  • Derechin M, Ostrowski W, Glaka M, Barnard EA (1971) Acid phosphomonoesterase of human prostrate: molecular weight, dissociation and chemical composition. Biochim Biophys Acta 250:143–154

    PubMed  Google Scholar 

  • Dewald B, Touster O (1973) A new α-D-mannosidase occurring in Golgi membranes. J Biol Chem 248:7223–7233

    PubMed  Google Scholar 

  • Dice JF, Goldberg AL (1975a) Statistical analysis of the relation between degradative rates and molecular weights of proteins. Arch Biochem Biophys 170:213–219

    Article  PubMed  Google Scholar 

  • Dice JF, Goldberg AL (1975b) Relationship between in vivo degradative rates and isoelectric points of proteins. Proc Natl. Acad Sci USA 72:3893–3897

    PubMed  Google Scholar 

  • Dice JF, Schimke RT (1973) Turnover of chromosomal proteins from rat liver. Arch Biochem Biophys 158:97–105

    Article  PubMed  Google Scholar 

  • Dice JF, Walker CD (1978) The general characteristics of intracellular protein degradation in diabetes and starvation. In: Protein turnover and lysosomal function. Academic Press, New York

    Google Scholar 

  • Dice JF, Dehlinger PJ, Schimke RT (1973) Studies on the correlation between size and relative degradation rate of soluble proteins. J Biol Chem 248:4220–4228

    PubMed  Google Scholar 

  • Dice JF, Walker CD, Byrne B, Cardiel A (1978) General characteristics of protein degradation in diabetes and starvation. Proc Natl Acad Sci USA 75:2093–2097

    PubMed  Google Scholar 

  • Dingle JT (ed) (1973) Lysosomes in biology and pathology, vol 3. North-Holland, Amsterdam

    Google Scholar 

  • Dingle JT, Dean RT (eds) (1975) Lysosomes in biology and pathology, vol 4. North-Holland, Amsterdam

    Google Scholar 

  • Dingle JT, Dean RT (eds) (1976) Lysosomes in biology and pathology, vol 5. North-Holland, Amsterdam

    Google Scholar 

  • Dingle JT, Fell HB (eds) (1969a) Lysosomes in biology and pathology, vol 1. North-Holland, Amsterdam

    Google Scholar 

  • Dingle JT, Fell HB (eds) (1969b) Lysosomes in biology and pathology, vol 2. North-Holland, Amsterdam

    Google Scholar 

  • Dingle JT, Fell HB, Glauert AM (1969) Endocytosis of sugars in embryonic skeletal tissues in organ culture. IV. Lysosomal and other biochemical effects. General discussion. J Cell Sci 4:139–154

    PubMed  Google Scholar 

  • Dingle JT, Poole RA, Lazarus VS, Barrett AJ (1973) Immunoinhibition of intracellular protein digestion in macrophages. J Exp Med 137:1124–1141

    Article  PubMed  Google Scholar 

  • Dunn WB, Hardin JH, Spicer SS (1968) Ultrastructural localization of myeloperxodase in human neutrophil and rabbit heterophil and eosinophil leukocytes. Blood 32:935–944

    PubMed  Google Scholar 

  • Ehrenreich BA, Cohn ZA (1969) The fate of peoptides pinocytosed by macrophages in vitro. J Exp Med 129:227–243

    Article  PubMed  Google Scholar 

  • Ferdinand W, Bartley N, Broomhead V (1973) Amino acid production in isolated rat mitochondria. Biochem J 134:431–436

    Google Scholar 

  • Fishman WH, Ide H, Rufo R (1969) Dual localization of acid hydrolases in endoplasmic reticulum and in lysosomes. I. β-glucuronidase staining reaction and cytochemical studies on kidney in androgen-stimulated mice. Histochemistry 20:287–299

    Article  PubMed  Google Scholar 

  • Fushimi H, Tarui S (1976a) α-glycosidases and diabetic microangiopathy. I. Decreases of α-glycosidase activities in diabetic rat kidney. II. An insulin-dependent isozyme of β-N-acetyl-glucosaminidase. J Biochem (Tokyo) 79:265–270, 271–275

    PubMed  Google Scholar 

  • Fushimi H, Tarui S (1976b) Retina, tear, and serum β-N-acetyl-glucosaminidase activitities in diabetic patients. Clin Chem 71:1–8

    Article  Google Scholar 

  • Galjaard H, Hoogeveen A, de Wit-Verbeck HA, Reusen AJJ, Keizzer W, Westeveld A, Bootsma D (1974) Tay-Sachs and Sandhoff's disease: intergenic complementation after somatic cell hybridization. Exp Cell Res 87:444–448

    Article  PubMed  Google Scholar 

  • Ganschow R, Paigen K (1967) Separate genes determine the structure and intracellular location of hepatic glucuronidase. Proc Natl. Acad Sci USA 58:938–945

    PubMed  Google Scholar 

  • Geiger B, Arnon R (1976) Chemical characterization and subunit structure of human N-acetylhexosaminidase A and B. Biochemistry 15:3484–3493

    Article  PubMed  Google Scholar 

  • Glass RD, Doyle D (1972) On the measurement of protein turnover in animal cells. J Biol Chem 247:5234–5242

    PubMed  Google Scholar 

  • Goldberg AL, Dice JF (1974) Intracellular protein degradation in mammalian and bacterial cells. Annu Rev Biochem 43:835–869

    Article  PubMed  Google Scholar 

  • Goldberg AL, St John AC (1976) Intracellularprotein degradation in mammalian and bacterial cells: Part 2. Annu Rev Biochem 45:747–803

    Article  PubMed  Google Scholar 

  • Goldberg AL, Howell EM, Martel SB, Prouty WF, Li JB (1974) The physiological significance of protein degradation in animal and bacterial cells. Fed Proc 33:1112–1120

    PubMed  Google Scholar 

  • Goldman R (1976) Ion distribution and membrane permeability in lysosomal suspensions. In: Dingle JT, Dean RT (eds) Lysosomes in biology and pathology, vol 5. North-Holland, Amsterdam, pp 309–336

    Google Scholar 

  • Goldstein JL, Brown MS (1976) The low density lipoprotein pathway and its relation to atherosclerosis. Annu Rev Biochem 46:897–930

    Article  Google Scholar 

  • Goldstone A, Koenig H (1972) Biosynthesis of lysosomal glycoproteins in rat kidney. Life Sci 11:511–523

    Article  Google Scholar 

  • Goldstone A, Koenig H (1973) Physicochemical modifications of lysosomal hydrolase during intracellular transport. Biochem J 132:267–282

    PubMed  Google Scholar 

  • Goldstone A, Koenig H (1974) Synthesis and turnover of lysosomal glycoproteins. Relation to the molecular heterogeneity of the lysosomal enzymes. FEBS Lett 39:176–181

    Article  PubMed  Google Scholar 

  • Goldstone A, Konecny P, Koenig H (1971) Lysosomal hydrolases: conversion of acidic to basic forms by neuraminidase. FEBS Lett 13:68–77

    Article  PubMed  Google Scholar 

  • Goldstone A, Koenig H, Nayyar R, Hughes C, Lu C (1973) Isolation and characterization of rough microsomal fraction from rat kidney that is enriched in lysosomal enzymes. Biochem J 132:267–282

    PubMed  Google Scholar 

  • Gordon AH (1973) The role of lysosomes in protein catabolism. In: Dingle JT (ed) Lysosomes in biology and pathology, vol 4. North-Holland, Amsterdam, pp 89–137

    Google Scholar 

  • Gordon S, Cohn ZA (1973) The macrophage. Int Rev Cytol 36:171–214

    PubMed  Google Scholar 

  • Graham ERB, Roy AB (1973) The sulphatase of ox liver. XVII. Sulphatase A as a glycoprotein. Biochim Biophys Acta 329:88–92

    PubMed  Google Scholar 

  • Gray RW, Arsenis C, Jeffay HJ (1970) Neutral protease activity associated with the rat liver peroxisomal fraction. Biochim Biophys Acta 222:627–636

    PubMed  Google Scholar 

  • Haas R, Heinrich PC, Sasse D (1979) Proteolytic enzymes of rat liver mitochondria. Evidence for a mast cell origin. FEBS Lett 103:168–171

    Article  PubMed  Google Scholar 

  • Hanson H, Kirschke H, Langner J, Wiederanders B, Ansorge S, Bohley P (1977) Intracellular protein catabolism in vitro and in vivo. In: Turk V, Marks N (eds) Intracellular protein catabolism II. Plenum, New York, pp 1–11

    Google Scholar 

  • Hasilik A, Rome LH, Neufeld EF (1979) Processing of lysosomal enzymes in human skin fibroblasts. Fed Proc 38:467

    Google Scholar 

  • Henning R, Plattner H (1974) Isolation of rat liver lysosomes by loading with colloidal gold. Biochim Biophys Acta 354:114–120

    PubMed  Google Scholar 

  • Hers HG, van Hoof F (eds) (1973) Lysosomes and storage disease. Academic Press, New York

    Google Scholar 

  • Hickman S, Neufeld EF (1972) A hypothesis for I-cell disease: defective hydrolases that do not enter lysosomes. Biochem Biophys Res Commun 49:992–999

    Article  PubMed  Google Scholar 

  • Hickman S, Shapiro LJ, Neufeld EF (1974) A recognition marker required for uptake of a lysosomal enzyme by cultured fibroblasts. Biochem Biophys Res Commun 57:55–61

    Article  PubMed  Google Scholar 

  • Hieber V, Distler J, Myerowitz R, Schmickel RD, Jourdian GW (1976) The role of glycosidically bound mannose in the assimilation of β-galactosidase by generalized gangliosidosis fibroblasts. Biochem Biophys Res Commun 73:710–717

    PubMed  Google Scholar 

  • Himeno M, Hashiguchi Y, Kato K (1974) β-glucuronidase of bovine liver: purification, properties, carbohydrate composition. J Biochem (Tokyo) 76:1243–1252

    PubMed  Google Scholar 

  • Himeno M, Okhara H, Arakawa Y, Kato K (1975) β-Glucuronidase of rat preputial gland: crystallization, properties, carbohydrate composition, and subunits. J Biochem (Tokyo) 77:427–438

    PubMed  Google Scholar 

  • Himeno M, Nishimura Y, Tsuji H, Kato K (1976) Purification and characterization of microsomal and lysosomal β-glucuronidase from rat liver by use of immunoaffinity chromatography. Eur J Biochem 70:349–359

    Article  PubMed  Google Scholar 

  • Himeno M, Nishimura Y, Takahashi Y, Kato K (1978) The synthesis of rat liver lysosomes. III. Chemical composition of microsomal and lysosomal β-glucuronidases purified from rat liver. J Biochem (Tokyo) 83:511–518

    PubMed  Google Scholar 

  • Holtzman E (1976) Lysosomes: a survey. Springer, New York Heidelberg Berlin

    Google Scholar 

  • Hopgood MF, Clark MG, Ballard FJ (1977) Inhibition of protein degradation in isolated rat hepatocytes. Biochem J 164:399–407

    PubMed  Google Scholar 

  • Horecker BL, Melloni E, Pontremoli S (1975) Fructose 1,6-biphosphatase: properties of the neutral enzyme and its modifications by proteolytic enzymes. Adv Enzymol 42:193–225

    PubMed  Google Scholar 

  • Horecker BL, Lazo PS, Tsolas O, Sun SC (1978) Modification of fructose 1,6-biphosphatase by lysosomal proteinases. In: Segal HL, Doyle DJ (eds) Protein turnover and lysosomal function. Academic Press, New York, pp 333–351

    Google Scholar 

  • Huisman W, Lanting L, Bouma JMW, Gruber M (1974) Proteolysis at neutral pH in a lysosomal cytosol system cannot be attributed to uptake of proteins into lysosomes. FEBS Lett 45:121–131

    Article  Google Scholar 

  • Ide M, Fishman WM (1969) Dual localization of β-glucuronidase and phosphatase in lysosomes and microsomes. II. Membrane-associated enzymes. Histochemistry 20:300–321

    Article  PubMed  Google Scholar 

  • Kaplan A, Achord DT, Sly WS (1977a) Phosphohexosyl components of a lysosomal enzyme are recognized by pinocytosis receptors on human fibroblasts. Proc Natl Acad Sci USA 74:2026–2030

    PubMed  Google Scholar 

  • Kaplan A, Fischer D, Achord D, Sly W (1977b) Phosphohexosyl recognition is a general characteristic of pinocytosis of lysosomal glycosidases by human fibroblasts. J Clin Invest 60:1088–1093

    PubMed  Google Scholar 

  • Kaplan A, Fischer D, Sly WS (1978) Correlation of structural features of phosphomannans with their ability to inhibit pinocytosis of human β-glucuronidase by human fibroblasts. J Bio Chem 253:647–650

    Google Scholar 

  • Katunuma N (1973) Enzyme degradation and its regulation by group specific proteases in various organs of the rat. Curr Top Cell Regul 7:175–203

    PubMed  Google Scholar 

  • Katunuma N (1975) Regulation of intracellular enzyme levels by limited proteolysis. Rev Physiol Biochem Pharmacol 78:83–104

    Google Scholar 

  • Katnuma N, Kominami E., Kobayashi K, Banno Y, Suzuki K, Chichibu K, Hamaguchi Y, Katsunuma T (1975a) Studies on new intracellular proteases in various organs of rat. 1. Purification and comparison of their properties. Eur J Biochem 52:37–50

    Article  PubMed  Google Scholar 

  • Katunuma N, Kominami E, Kobayashi K, Hamaguchi Y, Banno Y, Chichibu K, Katsunuma T, Shiotami T (1975b) Initiating mechanisms of intracellular enzyme degradation and new special proteases in various organs. In: Schimke RT, Katunuma N (eds) Intracellular protein turnover. Academic Press, New York, pp 187–204

    Google Scholar 

  • Keller RK, Touster O (1975) Physical and chemical properties of β-glucuronidase from the preputial gland of the female rat. J Biol Chem 250:4765–4769

    PubMed  Google Scholar 

  • Knowles SE, Ballard FJ (1976) Selective control of the degradation of normal and aberrant proteins in Reuber H35 hepatoma cells. Biochem J 156:609–617

    PubMed  Google Scholar 

  • Kominami E, Kobayashi K, Kominami S, Katunuma N (1972) Properties of a specific protease for pyroxidal enzymes and its biologic role. J Biol Chem 247:6848–6855

    PubMed  Google Scholar 

  • Kominami E, Banno Y, Chichibu K, Shiotani T, Hamaguchi Y, Katunuma N (1975) Studies on new intracellular proteases in various organs of rat. 2. Mode of limited proteolysis. Eur J Biochem 52:51–57

    Article  PubMed  Google Scholar 

  • Kornfeld R, Kornfeld S (1976) Comparative aspects of glycoprotein structure. Annu Rev Biochem 45:217–237

    Article  PubMed  Google Scholar 

  • Lalley PA, Shows TB (1974) Lysosomal and microsomal glucuronidase: genetic variants alters electrophoretic mobility of both hydrolases. Science 185:442–444

    PubMed  Google Scholar 

  • Lalley PA, Rattazzi MC, Shows TB (1974) Human β-D-acetyl-hexosaminidase A and B: expression and linkage relationship in human somatic hybrids. Proc Natl Acad Sci USA 71:1569–1573

    PubMed  Google Scholar 

  • Lee YC, Scocca JR (1972) A common structural unit in asparagine-oligosaccharides of several glycoproteins from different sources. J Biol Chem 247:5753–5758

    PubMed  Google Scholar 

  • Li E, Tabas I, Kornfeld S (1978) The synthesis of complex-type oligosaccharides. I. Structure of the lipid-linked oligosaccharide precursor of the complex-type oligosaccharides of the vesicular stomatitis virus G protein. J Biol Chem 253:7762–7770

    PubMed  Google Scholar 

  • Libby P, Goldberg AL (1978) Leupeptin, a protease inhibitor, decreases protein degradation in normal and diseased muscle. Science 199:534–537

    PubMed  Google Scholar 

  • Liu T, Stetson B, Turco SJ, Hubbard SC, Robbins PW (1979) Arrangement of glucose residues in the lipid-linked oligosaccharide precursor of asparaginyl oligosaccharides. J Biol Chem 254:4554–4559

    PubMed  Google Scholar 

  • Lloyd B (1971) A study of permeability of lysosomes to amino acids and small peptides. Biochem J 121:245–248

    PubMed  Google Scholar 

  • Lloyd JB (1976) Substrate specificy in pinocytosis and intralysosomal protein digestion. In: Ribbons DW, Brew K (eds) Proteolysis and physiological regulation. Academic Press, New York, pp 371–389

    Google Scholar 

  • Lovaas E (1974) Evidence for a proteolytic system in rat liver mitochondria. FEBS Lett 45:244–247

    Article  PubMed  Google Scholar 

  • Lusis AJ, Tomino S, Paigen K (1976) Isolation, characterization, and radioimmune assay of murine egasyn, a protein stabilizing glucuronidase membrane binding. J Biol Chem 251:7753–7760

    PubMed  Google Scholar 

  • Lusis AJ, Breen VA, Paigen K (1977) Nongenetic heterogeneity of mouse β-galactosidase. J Biol Chem 252:4613–4618

    PubMed  Google Scholar 

  • Mandell B, Stahl P (1977) Effects of diisopropyl phosphorofluoridate on rat liver microsomal and lysosomal β-glucuronidase. Biochem J 164:549–556

    Google Scholar 

  • Mapes CA, Sweeley CC (1973) Preparation and properties of an affinity column adsorbent for differentiation of multiple forms of α-galactosidase activity. J Biol Chem 248:2461–2470

    PubMed  Google Scholar 

  • Meijer AEFH, Willighagen RCJ (1963) The activity of glucose-6-phosphatase, adenosine triphosphatase, succinic dehydrogenase, and acid phosphatase after dextran or polyvinylpyrrolidone uptake by liver. Biochem Pharmacol 12:973–980

    Article  PubMed  Google Scholar 

  • Meisler MH (1978) Synthesis and secretion of kidney β-galactosidase in mutant le/le mice. J Biol Chem 253:3129–3134

    PubMed  Google Scholar 

  • Meisler M, Paigen K (1972) Coordinated development of β-glucuronidase and β-galactosidase in mouse organs. Science 177:894–896

    PubMed  Google Scholar 

  • Momany FA, Aguanno JJ, Larrabee AR (1976) Correlation of the degradative rates of protein with a parameter calculated from the amino acid composition and subunit size. Proc Natl Aced Sci USA 73:3093–3098

    Google Scholar 

  • Morell AG, Scheinberg IH, Hickman J, Ashwell G (1971) The role of sialic acid in determining the survival of glycoprotein in the circulation. J Biol Chem 246:1461–1467

    PubMed  Google Scholar 

  • Mortimore GE, Neely AN (1975) Regulatory effects of insulin, glucagon and amino acids on hepatic protein turnover in association with alterations of the lysosomal system. In: Intracellular protein turnover. Academic Press, New York

    Google Scholar 

  • Mortimore GE, Ward WF (1976) Behavior of the lysosomal system during organ perfusion. An inquiry into the mechanism of hepatic proteolysis. In: Dingle JT, Dean RT (eds) Lysosomes in biology and pathology, vol 5. North-Holland, Amsterdam, pp 157–184

    Google Scholar 

  • Mortimore GE, Ward WF, Schworer CM (1978) Lysosomal processing of intracellular protein in rat liver and its general regulation by amino acids and insulin. In: Segal HL, Doyle DJ (eds) Protein turnover and lysosomal function. Academic Press, New York, pp 67–87

    Google Scholar 

  • Natowicz MR, Chi MM-Y, Lowry OH, Sly WS (1979) Enzymatic identification of mannose 6-phosphate on the recognition marker for receptor-mediated pinocytosis of β-glucuronidase by human fibroblasts. Proc Natl Acad Sci USA 76:4322–4326

    PubMed  Google Scholar 

  • Neely AN, Mortimore GE (1974) Localization of products of endogenous proteolysis in the lysosomes of perfused rat liver. Biochem Biophys Res Commun 59:680–687

    Article  PubMed  Google Scholar 

  • Neely AN, Nelson PB, Mortimore GE (1974) Osmotic alterations of the lysosomal system during rat liver perfusion: reversible suppression by insulin and amino acids. Biochim Biophys Acta 338:458–472

    Google Scholar 

  • Neely AN, Cox JR, Fortney JA, Schworer CM, Mortimore GE (1977) Alterations of lysosomal size and density during rat liver perfusion: suppression by insulin and amino acids. J Biol Chem 252:6948–6954

    PubMed  Google Scholar 

  • Neil MW, Horner MW (1964a) Studies on acid hydrolases in adult and foetal tissues: acid p-nitrophenyl phosphate phosphohydrolases of adult guinea pig lens. Biochem J 92:217–224

    PubMed  Google Scholar 

  • Neil MW, Horner MW (1964b) Studies on acid hydrolases in adult and foetal tissues. II. Acids phenyl phosphomonoesterases of adult mouse liver. Biochem J 93:220–224

    PubMed  Google Scholar 

  • Neufeld EF, Lim TW, Shapiro LJ (1975) Inherited disorders of lysosomal metabolism. Annu Rev Biochem 44:357–376

    Article  PubMed  Google Scholar 

  • Neufeld EF, Sando GN, Garvin J, Rome LH (1977) The transport of lysosomal enzymes. J Supramol Struc 6:95–101

    Article  Google Scholar 

  • Nichols BA, Bainton DR, Farquhar MG (1971) Differentiation of monocytes: origin, nature, and fate of their azurophilic granules. J Cell Biol 50:498–515

    Article  PubMed  Google Scholar 

  • Novikoff AB (1973) Lysosomes: a personal account. In: Hers HG, van Hoof F (eds) Lysosomes and storage diseases. Academic Press, New York, pp 1–41

    Google Scholar 

  • Novikoff AB (1976) The endoplasmic reticulum: a cytochemist's view (a review). Proc Natl Acad Sci USA 73:802–810

    Google Scholar 

  • Novikoff PM, Yam A (1978) Sites of lipoprotein particles in normal rat hepatocytes. J Cell Biol 76:1–11

    Article  PubMed  Google Scholar 

  • Novikoff PM, Novikoff AB, Quintana N, Hauw J-J (1971) Golgi apparatus, GERL, and lysosomes of neurons in rat dorsal root ganglia studied by thick section and thin section cytochemistry. J Cell Biol 50:859–886

    Article  PubMed  Google Scholar 

  • Ohkuma S, Poole B (1978) Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc Natl Acad Sci USA 75:3327–3331

    PubMed  Google Scholar 

  • Ohtsuka K, Wakabayashi M (1970) Purification and characterization of the rat preputial gland β-glucuronidase. Enzymologia 39:109–124

    PubMed  Google Scholar 

  • Okada S, O'Brien JS (1969) Tay-Sachs disease: generalized absence of a β-D-N-acetyl-hexosaminidase component. Science 165:698–700

    PubMed  Google Scholar 

  • Okumura T, Yamashina I (1973) Further purification and characterization of α-mannosidase from hog kidney. J Biochem (Tokyo) 73:131–138

    PubMed  Google Scholar 

  • Opheim DJ, Touster O (1977) Purification and characterization of rat liver lysosomal α-L-fucosidase. J Biol Chem 252:739–743

    PubMed  Google Scholar 

  • Opheim DJ, Touster O (1978) Lysosomal α-D-mannosidase of rat liver: purification and comparison with Golgi and cytosolic α-D-mannosidase. J Biol Chem 253:1017–1023

    PubMed  Google Scholar 

  • Owens JW, Stahl P (1976) Purification and characterization of rat liver lysosomal β-glucuronidase. Biochim Biophys Acta 438:474–486

    PubMed  Google Scholar 

  • Owens JW, Gammon KL, Stahl PD (1975) Multiple forms of β-glucuronidase in rat liver lysosomes and microsomes. Arch Biochem Biophys 166:258–272

    Article  PubMed  Google Scholar 

  • Paigen K (1961) The effect of mutation on the intracellular location of β-glucuronidase. Exp Cell Res 25:286–301

    Article  PubMed  Google Scholar 

  • Paigen K, Labarca C, Watson G (1979) A regulatory locus for mouse β-glucuronidase induction. Gur, controls messenger RNA activity. Science 203:554–556

    PubMed  Google Scholar 

  • Papahadjopoulos D, Mayhew E, Taber R, Wilson T (1978) The use of lipid vesicles for introducing macromolecules into cells. In: Segal HL, Doyle DJ (eds) Protein turnover and lysosomal function. Academic Press, New York, pp 543–560

    Google Scholar 

  • Parodi AJ, Leloir LF (1979) The role of lipid intermediates in the glycosylation of proteins in the encaryotic cell. Biochim Biophys Acta 559:1–37

    PubMed  Google Scholar 

  • Pettingill OS, Fishman WH (1962) Influence of testosterone on glycine incorporation into mouse β-glucuronidase. Exp Cell Res 28:248–253

    Article  PubMed  Google Scholar 

  • Poole B (1971) The kinetics of disappearance of labeled leucine from the free leucine pool of rat liver and its affects on the apparent turnover of catalase and other hepatic proteins. J Biol Chem 246:6587–6591

    PubMed  Google Scholar 

  • Poole B (1974) The inhibition of cellular protein degradation in rat fibroblasts. In: Schimke RT, Katunuma N (eds) Intracellular protein turnover. Academic Press, New York, pp 249–264

    Google Scholar 

  • Poole B, Wibo M (1973) Protein degradation in cultured cells: the effect of fresh medium, fluoride, and iodoacetate on the digestion of cellular protein of rat fibroblasts. J Biol Chem 248:6221:6226

    Google Scholar 

  • Poole B, Ohkuma S, Warburton M (1978) Some aspects of the intracellular breakdown exogenous and endogenous proteins. In: Protein turnover and lysosomal function. Academic Press, New York

    Google Scholar 

  • Popov D, Alterman L, Sabatini D, Kreibich G (1978) In vitro synthesis of β-glucuronidase by rat liver and preputial gland membrane bound ribosomes. J Cell Biol 79:364a

    Google Scholar 

  • Ray D, Cornell E, Schneider D (1976) Evidence for degradation of intracellular protein in liver lysosomes of fasted rats. Biochem Biophys Res Commun 71:1246–1250

    Article  PubMed  Google Scholar 

  • Rechcigl M (ed) (1971) Enzyme synthesis and degradation in mammalian systems. University Park Press, Baltimore

    Google Scholar 

  • Robinson D (1974) Multiple forms of glycosidases in normal and pathological states. Enzyme 18:114–135

    PubMed  Google Scholar 

  • Rome LH, Garvin AJ, Allietta MM, Neufeld EF (1979) Two species of lysosomal organelles in cultured human fibroblasts. Cell 17:143–153

    Article  PubMed  Google Scholar 

  • Sahagian G, Distler J, Hieber V, Schmickel R, Jourdian GW (1979) Role of mannose 6-phosphate in β-galactosidase assimilation. Fed Proc 38:467

    Google Scholar 

  • Sandhoff K (1969) Variation of β-N-acetylhexosaminidase-pattern in Tay-Sachs disease. FEBS Lett 4:351–354

    Article  PubMed  Google Scholar 

  • Sandhoff K, Harzer K (1973) Total hexosaminidase deficiency in Tay-Sachs disease (variant 0). In: Hers HG, van Hoof F (eds) Lysosomes and storage disease. Academic Press, New York, pp 305–321

    Google Scholar 

  • Sandhoff K, Andreae U, Jatzkewitz H (1968) Deficient hexosaminidase activity in an exceptional case of Tay-Sachs disease with additional storage of globoside in visceral organs. Life Sci 7:283–288

    Article  PubMed  Google Scholar 

  • Sando GN, Neufeld EF (1977) Recognition and receptor-mediated uptake of a lysosomal enzyme α-L-iduronidase, by cultured human fibroblasts. Cell 12:619–627

    Article  PubMed  Google Scholar 

  • Schimke RT (1973) Control of enzyme levels in mammalian tissues. Adv Enzymol 37:135–187

    PubMed  Google Scholar 

  • Schulman JD, Bradley KH (1970) The metabolism of amino acids, peptides, and disulfides in lysosomes of fibroblasts cultured from normal individuals and those with cystinosis. J Exp Med 132:1090–1104

    Article  PubMed  Google Scholar 

  • Scornik OA, Botbol V (1976) Roles of changes in protein degradation in the growth of regenerating livers. J Biol Chem 251:2891–2897

    PubMed  Google Scholar 

  • Scornik OA, Botbol V, Conde R, Amils R (1978) The significance of protein degradation in the regulation of liver growth. In: Segal HL, Doyle DJ (eds) Protein turnover and lysosomal function. Academic Press, New York, pp 119–133

    Google Scholar 

  • Segal HL (1975) Lysosomes and intracellular protein turnover. In: Dingle JT, Dean RT (eds) Lysosomes in biology and pathology, vol 4. North-Holland, Amsterdam, pp 295–302

    Google Scholar 

  • Segal HL, Doyle DJ (eds) (1978) Protein turnover and lysosome function. Academic Press, New York

    Google Scholar 

  • Segal HL, Matsuzaw T, Haider M, Abraham GJ (1969) What determines the half-life of proteins in vivo? Some experiments with alanine aminotransferase. Biochem Biophys Res Commun 36:764–770

    Article  PubMed  Google Scholar 

  • Segal HL, Winkler JR, Miyagi MP (1974) Relationship between degradation rates of proteins in vivo and their susceptibility to lysosomal proteases. J Biol Chem 249:6364–6365

    PubMed  Google Scholar 

  • Segal HL, Dunaway GA, Winkler JR (1976) The role of lysosomes in protein turnover. In: Proteolysis and physiological regulation. Academic Press, New York

    Google Scholar 

  • Segal HL, Brown JA, Dunaway GA, Winkler JR, Madrick HM, Rothstein DM (1978) Factors involved in the regulation of protein turnover. In: Protein turnover and lysosomal function. Academic Press, New York

    Google Scholar 

  • Shoup VA, Touster O (1976) Purification and characterization of the α-D-mannosidase of rat liver cytosol. J Biol Chem 251:3845–3852

    PubMed  Google Scholar 

  • Silverstein SC, Steinman RM, Cohn ZA (1977) Endocytosis Annu Rev Biochem 46:669–722

    Article  Google Scholar 

  • Skudlarek M, Swank RT (1979) Biosynthesis of two lysosomal enzymes in macro-phages: evidence for a precursor of β-galactosidase. J Biol Chem 254:9939–9942

    PubMed  Google Scholar 

  • Sleyster ECH, Knook DL (1978) Multiple forms of acid phosphatase in rat liver parenchymal, endothelial, and Kupffer cells. Arch Biochem Biophys 190:756–761

    Article  PubMed  Google Scholar 

  • Sly WS, Gonsalez-Noriega A, Natowicz M, Fischer HD, Chambers JP (1979) Role of phosphomannosyl recognition marker in the uptake and transport of lysosomal enzyme. Fed Proc 38:467

    Google Scholar 

  • Smith K, Ganschow RE (1975) The turnover of two subcellular forms of an acid hydrolase. J Cell Biol 67:407a

    Google Scholar 

  • Smith K, Ganschow RE (1978) The turnover of murine β-glucuronidase: comparison among liver, kidney, spleen and between lysosomes and microsomes. J Biol Chem 253:5437–5442

    PubMed  Google Scholar 

  • Stacey DA, Allfrey VG (1976) Nuclear penetration and lysosomal degradation of microinjected proteins in living HeLa cells. J Cell Biol 70:3a

    Google Scholar 

  • Stahl PD, Touster O (1971) β-glucuronidase of rat liver lysosomes: purification, properties, subunits. J Biol Chem 246:5398–5406

    PubMed  Google Scholar 

  • Stahl P, Mandell B, Rodman JS, Schlesinger P, Lang S (1975) Different forms of rat β-glucuronidase with rapid and slow clearance following intravenous injection: Selective serum enhancement of slow clearance forms by organophosphate compounds. Arch Biochem Biophys 170:536–546

    Article  PubMed  Google Scholar 

  • Stahl P, Schlesinger PH, Rodman JS, Doebber T (1976a) Recognition of lysosomal glycosidases in vivo by modified glycoproteins. Nature 264:86–88

    Article  PubMed  Google Scholar 

  • Stahl P, Rodman JS, Schlesinger P (1976b) Clearance of lysosomal hydrolases following intravenous infusion. Kinetics and competition experiments with β-glucuronidase and N-acetyl-β-D-glucosamindase. Arch Biochem Biophys 117:594–605

    Article  Google Scholar 

  • Stahl P, Six H, Rodman JS, Schlesinger P, Tulsiani DRP, Touster O (1976c) Evidence for specific recognition sites mediating clearance of lysosomal enzymes. Proc Natl Acad Sci USA 73:4045–4049

    PubMed  Google Scholar 

  • Stahl PD, Rodman JS, Miller MJ, Schlesinger PH (1978) Evidence for receptor-mediated binding of glycoproteins, glycoconjugates, and lysosomal hydrolases by alveolar macrophages. Proc Natl Acad Sci USA 75:1399–1403

    PubMed  Google Scholar 

  • Stahn R, Maier K-P, Hannig K (1970) A new method for the preparation of rat liver lysosomes: separation of cell organelles from rat liver by carrier-free continuous electrophoresis. J Cell Biol 46:576–591

    Article  PubMed  Google Scholar 

  • Stareky PM, Barrett AJ (1976) Human lysosomal elastase: catalytic and immunological properties. Biochem J 155:265–271

    PubMed  Google Scholar 

  • Strawser LD, Touster O (1979) Demonstration of a rat liver microsomal binding protein specific for β-glucuronidase. J Biol Chem 254:3716–3719

    PubMed  Google Scholar 

  • Suzuki K, Suzuki Y (1970) Globoid cell leucodystrophy (Krabbe's disease): deficiency of galactocerebrosidase β-galactosidase. Proc Natl Acad Sci USA 66:302–309

    PubMed  Google Scholar 

  • Swallow DM, Stokes DC, Corney G, Harris H (1974) Differences between the N-acetyl hexosaminidase isozymes in serum and tissues. Ann Hum Genet 37:287–302

    PubMed  Google Scholar 

  • Swank RT, Paigen K (1973) Genetic evidence for a macromolecular β-glucuronidase complex in microsomal membranes. J Mol Biol 77:371–390

    Article  PubMed  Google Scholar 

  • Swank RT, Paigen K, Ganschow RE (1973) Genetic control of glucuronidase induction in mice. J Mol Biol 81:225–243

    Article  PubMed  Google Scholar 

  • Tager JM, Hooghwinkel GJM, Daems WTH (eds) (1974) Enzyme therapy in lysosomal storage disease. North-Holland, Amsterdam

    Google Scholar 

  • Tallman JF, Brady RO (1973) The purification and porperties of a mammalian neuraminidase. Biochim Biophys Acta 293:434–443

    PubMed  Google Scholar 

  • Tappel AL (1972) Lysosomal enzymes and other components. In: Dingle JT, Fell HB (eds) Lysosomes in biology and pathology, vol 2. North-Holland, Amsterdam, pp 207–244

    Google Scholar 

  • Tomino S, Paigen K, Tulsiani DRP, Touster O (1975) Purification and chemical properties of mouse liver lysosomal (L form) β-glucuronidase. J Biol Chem 250:8503–8509

    PubMed  Google Scholar 

  • Touster O (1973) Some aspects of the cellular biochemistry of lysosomal and related glycosidases. Mol Cell Biochem 2:169–177

    Article  PubMed  Google Scholar 

  • Touster O (1978) The chemistry and turnover of lysosomal enzymes. In: Segal HL, Doyle DJ (eds) Protein turnover and lysosomal function. Academic Press, New York, pp 231–250

    Google Scholar 

  • Trouet A (1964) Immunisation de lapins par des lysosomes hepatiques de rats traites au triton WR 1339. Arch Int Physiol Biochem 72:698–700

    Google Scholar 

  • Trouet A (1974) Isolation of modified liver lysosomes. Methods Enzymol 31:323–329

    PubMed  Google Scholar 

  • Tsuji H, Kato K (1977) The synthesis of rat liver lysosomes. II. Intracellular transport of β-glucuronidase. J Biochem (Tokyo) 82:637–644

    PubMed  Google Scholar 

  • Tsuji H, Hattoti N, Yamamoto T, Kato K (1977) The synthesis of rat liver lysosomes. I. Comparison of the microsomal, Golgi, and lysosomal β-glucuronidase. J Biochem (Tokyo) 82:619–636

    PubMed  Google Scholar 

  • Tulkens P, Trouet A, van Hoof F (1970) Immunological inhibition of lysosome function. Nature 228:1282–1285

    Article  PubMed  Google Scholar 

  • Tulsiani DRP, Keller RK, Touster O (1975) The preparation and chemical composition of the multiple forms of β-glucuronidase from the female rat preputial gland. J Biol Chem 250:4770–4776

    PubMed  Google Scholar 

  • Tulsiani DRP, Buschiazzo HO, Tolbert B, Touster O (1977a) Changes in plasma hydrolase activities in hereditary and streptozotocin-induced diabetes. Arch Biochem Biophys 181:216–227

    Article  PubMed  Google Scholar 

  • Tulsiani DRP, Opheim DJ, Touster O (1977b) Purification and characterization of α-D-mannosidase from rat liver Golgi membranes. J Biol Chem 252:3227–3233

    PubMed  Google Scholar 

  • Tulsiani DRP, Six H, Touster O (1978) Rat liver microsomal and lysosomal β-glucuronidase differ in both carbohydrate and amino acid composition. Proc Natl Acad Sci USA 75:3080–3084

    PubMed  Google Scholar 

  • Turk V, Marks N (eds) (1977) Intracellular protein catabolism II. Plenum, New York

    Google Scholar 

  • Vaes G (1973) Digestive capacity of lysosomes. In: Hers HG, van Hoof F (eds) Lysosomes and storage disease. Academic Press, New York, pp 43–77

    Google Scholar 

  • van Dijk VFM, Roholi PJM, Reijngoud DJ, Tager JM (1976) A simple procedure for the isolation of lysosomes from normal rat liver. FEBS Lett 62:117–181

    Google Scholar 

  • Verity MA (1970) Control of metabolic hydrolysis in the lysosome-vacuolar apparatus. In: Fishman WH (ed) Metabolic conjugation and metabolic hydrolysis, vol 3. Academic Press, New York, pp 209–247

    Google Scholar 

  • Verpoorte JA (1974) Isolation and characterization of the major β-N-acetyl-D-glucosaminidase from human plasma. Biochemistry 13:793–799

    Article  PubMed  Google Scholar 

  • von Figura K, Klein U (1979) Isolation and characterization of phosphorylated oligosaccharides from α-N-acetylglucosaminidase that are recognized by cell surface receptors. Eur J Biochem 94:347–354

    Article  PubMed  Google Scholar 

  • von Figura K, Kresse H (1974) Quantitative aspects of pinocytosis and the intracellular fate of N-acetyl-β-D-glucosaminidase in Sanfilippo B fibroblasts. J Clin Invest 53:85–90

    PubMed  Google Scholar 

  • Wakabayashi M (1970) β-glucuronidase in metabolic hydrolysis. In: Fishman NH (ed) Metabolic conjugation and metabolic hydrolysis, vol 2. Academic Press, New York, pp 519–602

    Google Scholar 

  • Wang C-C, Touster O (1975) Turnover studies in proteins of rat liver. J Biol Chem 250:4896–4902

    PubMed  Google Scholar 

  • Warburton MJ, Wynn CH (1976a) The hyperactivity of hamster fibroblast lysosomal enzymes after endocytosis of sucrose. Biochem Biophys Res Commun 70:94–100

    Article  PubMed  Google Scholar 

  • Warburton MJ, Wynn CH (1976b) The effect of intralysosomal storage on the turnover of hamster fibroblast lysosomal and Golgi-apparatus enzymes. Biochem J 158:401–407

    PubMed  Google Scholar 

  • Warburton MJ, Wynn CH (1977) The turnover of hamster fibroblast lysosomal β-D-glucuronidase. Biochem J 162:201–203

    PubMed  Google Scholar 

  • Ward WF, Cox JR, Mortimore GE (1977) Lysosomal sequestration of intracellular protein as a regulatory step in heptaic proteolysis. J Biol Chem 252:6955–6961

    PubMed  Google Scholar 

  • Ward WF, Chua BL, Li JB, Morgan HE, Mortimore GE (1979) Inhibition of basal and deprivation-induced proteolysis by leupeptin and pepstatin in perfused rat liver and heart. Biochem Biophys Res Commun 87:92–98

    Article  PubMed  Google Scholar 

  • Wetzel BK, Horn RG, Spicer SS (1967) Fine structural studies of heterophil, eosinophil, and basophil granulocytes in rabbis. Lab Invest 16:349–382

    PubMed  Google Scholar 

  • Wibo M, Poole B (1974) Protein degradation in cultured cells. II. The uptake of chloroquine by rat fibroblasts and the inhibition of cellular protein degradation and cathepsin B1. J Cell Biol 63:430–440

    Article  PubMed  Google Scholar 

  • Widman J-J, Lotran RS, Fahimi HD (1972) Mononuclear phagocytes (Kupffer cells) and endothelial cells: identification of two functional cell types in rat liver sinusoids by endogenous peroxidase activity. J Cell Biol 52:159–170

    Article  PubMed  Google Scholar 

  • Wilson E, Papahadjopoulos D, Taber RL (1977) Biological properties of poliovirus encapsulated in lipid vesicles: antibody resistance and infectivity in virus-resistant cells. Proc Natl Acad Sci USA 74:3471–3475

    PubMed  Google Scholar 

  • Woodbury RG, Gruzenski GM, Lagunoff D, (1978a) Immunofluorescent localization of a serine protease in rat small intestine. Proc Natl Acad Sci USA 75:2785–2789

    PubMed  Google Scholar 

  • Woodbury RG, Everitt M, Sanada Y, Katunuma N, Lagunoff D, Neurath H (1978b) A major serine protease in rat skeletal muscle: evidence for mast cell origin. Proc Natl Acad Sci USA 75:5311–5313

    PubMed  Google Scholar 

  • Woodside KH, Mortimore GE (1972) Suppression of protein turnover by amino acids in the perfused rat liver. J Biol Chem 247:6474–6481

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer-Verlag

About this chapter

Cite this chapter

Strawser, L.D., Touster, O. (1980). The cellular processing of lysosomal enzymes and related proteins. In: Reviews of Physiology, Biochemistry and Pharmacology, Volume 87. Reviews of Physiology, Biochemistry and Pharmacology, vol 87. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0030898

Download citation

  • DOI: https://doi.org/10.1007/BFb0030898

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-09944-4

  • Online ISBN: 978-3-540-39156-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics