A broadcasting algorithm on the arrangement graph

  • Leqiang Bai
  • Peter M. Yamakawa
  • Hiroyuki Ebara
  • Hideo Nakano
Session 8B: Distributed Computing
Part of the Lecture Notes in Computer Science book series (LNCS, volume 959)


In this paper, we propose a distributed algorithm for one-to-all broadcasting on the arrangement graph. The algorithm exploits the rich topological properties of the (n, k)-arrangement graph to constitute the broadcasting binary tree and works recursively. When faulty links are encountered, the concepts of node-disjoint paths and virtual paths are used to deal with the broadcasting procedure. It is shown that the message can be broadcast to all n!/(n−k)! processors in O(k lg n) steps for fault-free mode, and in O(k(k+lg n)) for less than k(n−k)−1 faulty links.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AHK87]
    S. B. Akers, D. Harel, and B. Krishnamuthy. “The star graph: An attractive alternative to the n-cube”. Proc. Int. Conf. Parallel Proceeding., pages 393–400, 1987.Google Scholar
  2. [CLR90]
    Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. “Introduction to Algorithms”. The MIT Press, Cambridge, 1990.Google Scholar
  3. [DT92]
    K. Day and A. Tripathi. “Arrangement graph: A class of generalized star graphs”. Information Processing Letters., 42:235–241, 1992.CrossRefGoogle Scholar
  4. [Fra92]
    P. Fraigniaud. “Asymptotically Optimal Broadcasting and Gossiping in Faulty Hypercube Multicomputer”. IEEE Trans. Computs., 41(11):1410–1419, 1992.CrossRefGoogle Scholar
  5. [HZ81]
    E. Horowitz and A. Zorat. “The binary tree as interconnection network: Application to multiprocessing systems and VLSI”. IEEE Trans. Computs., 30(4):245–253, 1981.Google Scholar
  6. [JH89]
    S. L. Johnsson and C. T. Ho. “Optimal Broadcasting and Presonalized Communcation in Hypercubes”. IEEE Trans. Computs., 38(9):1249–1268, 1989.CrossRefMathSciNetGoogle Scholar
  7. [MJ94]
    J. Misic and Z. Jovanovic. “Communication Aspects of the Star Graph Interconnection Network”. IEEE Trans. Parallel. Distrib Systs., 7(5):678–687, 1994.CrossRefGoogle Scholar
  8. [MS92]
    V. E. Mendia and D. Sarkar. “Optimal Broadcasting on the Star Graph”. IEEE Trans. Parallel Distrib Systs., 3(4):389–396, 1992.CrossRefGoogle Scholar
  9. [RS88]
    P. Ramanathan and K. G. Shin. “Reliable Broadcast in Hypercube Multicomputers”. IEEE Trans. Computs., 37(12):1654–1657, 1988.CrossRefGoogle Scholar
  10. [SLC93]
    J. P. Sheu, W. H. Liaw, and T. S. Chen. “A broadcasting algorithm in star graph interconnection network”. Information Processing Letters., 48:237–241, 1993.CrossRefMathSciNetGoogle Scholar
  11. [THY93]
    J. Y. Tien, C. T. Ho, and W. P. Yang. “Broadcasting on Incomplete Hypercubes”. IEEE Trans. Computs., 42(11):1393–1398, 1993.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Leqiang Bai
    • 1
  • Peter M. Yamakawa
    • 1
  • Hiroyuki Ebara
    • 2
  • Hideo Nakano
    • 3
  1. 1.Faculty of EngineeringOsaka UniversityOsakaJapan
  2. 2.Faculty of EngineeringKansai UniversityOsakaJapan
  3. 3.Osaka City UniversityOsakaJapan

Personalised recommendations