Advertisement

A better subgraph of the minimum weight triangulation

  • Bo-Ting Yang
Session 8A: Algorithms
Part of the Lecture Notes in Computer Science book series (LNCS, volume 959)

Abstract

Given a set of n points in the plane, it is shown that the csc(2π/7)-skeleton of S is a subgraph of the minimum weight triangulation of S. We improve the results in [2] that the √2-skeleton of S is a subgraph of the minimum weight triangulation of S.

Keywords

Computational geometry minimum weight triangulation point sets Euclidean plane 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Garey and D. Johnson, Computers and Intractability; A Guide to the Theory of NP-Completeness (Freeman, San Francisco, 1979).Google Scholar
  2. [2]
    J. M. Keil, Computing a subgraph of the minimum weight triangulation, Computational Geometry 4(1994)13–26.CrossRefGoogle Scholar
  3. [3]
    D. G. Kirkpatrick and J. D. Radke, A framework for computational morphology, in: G. T. Toussaint, ed., Computational Geometry (Elsevier, Amsterdam, 1985) 217–248.Google Scholar
  4. [4]
    B.-T. Yang, Y.-F. Xu and Z.-Y. You, A chain decomposition algorithm for the proof of a property on minimum weight triangulations, in: D.-Z. Du and X.-S. Zhang, eds., Algorithms and Computation, Lecture Notes in Computer Science 834 (Springer-Verlag, Berlin, 1994) 423–427.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Bo-Ting Yang
    • 1
  1. 1.Department of Scientific Computing, College of ScienceXi'an Jiaotong UniversityXi'anChina

Personalised recommendations