Conservative algorithms for parallel and sequential integer sorting

  • Yijie Han
  • Xiaojun Shen
Session 6A: Parallel Alg./Learning
Part of the Lecture Notes in Computer Science book series (LNCS, volume 959)


We present a conservative CRCW parallel algorithm for integer sorting. This algorithm sorts n integers from {0, 1, ..., m−1} in time O(n log log min(m,n)/p + log n) using p processors. The simulation of our parallel algorithm on the sequential machine yields a sequential algorithm for integer sorting which sorts n integers from {0, 1, ..., m−1} in time O(n min(log log n, log log m/log n)).


Algorithms analysis of algorithms bucket sorting conservative algorithms design of algorithms integer sorting parallel algorithms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. Albers and T. Hagerup. Improved parallel integer sorting without concurrent writing. Proc. The Third Annual ACM-SIAM Symp. on Discrete Algorithms, pp. 463–472.Google Scholar
  2. [2]
    R. Anderson and G. Miller. Deterministic parallel list ranking. Algorithmica 6: 859–868(1991).CrossRefGoogle Scholar
  3. [3]
    P.C.P. Bhatt, K. Diks, T. Hagerup, V.C. Prasad, T. Radzik, S. Saxena. Improved deterministic parallel integer sorting. Information and Computation 94, 29–47(1991).CrossRefGoogle Scholar
  4. [4]
    M. L. Fredman and D. E. Willard. Blasting through the information theoretic barrier with fusion trees. Proc. 1990 ACM Symp. on Theory of Computing, pp. 1–7(1990).Google Scholar
  5. [5]
    T. Hagerup. Towards optimal parallel bucket sorting. Inform. and Comput. 75, pp. 39–51(1987).CrossRefGoogle Scholar
  6. [6]
    Y. Han. Designing fast and efficient parallel algorithms. Ph.D. Thesis. Department of Computer Science, Duke University, Durham, North Carolina, 1987.Google Scholar
  7. [7]
    Y. Han. Parallel algorithms for computing linked list prefix. J. of Parallel and Distributed Computing 6 537–557(1989).CrossRefGoogle Scholar
  8. [8]
    T. Hagerup and H. Shen. Improved nonconservative sequential and parallel integer sorting. Infom. Process. Lett. 36, pp. 57–63(1990).CrossRefGoogle Scholar
  9. [9]
    D. Kirkpatrick and S. Reisch. Upper bounds for sorting integers on random access machines. Theoretical Computer Science 28, pp. 263–276(1984).CrossRefGoogle Scholar
  10. [10]
    P. M. Kogge and H. S. Stone. A parallel algorithm for the efficient solution of a general class of recurrence equations. IEEE Trans. Comput., Vol C-22, pp. 786–792(Aug. 1973).Google Scholar
  11. [11]
    R. E. Ladner and M. J. Fischer. Parallel prefix computation. J. ACM, pp. 831–838(Oct. 1980).Google Scholar
  12. [12]
    F. Preparata. New parallel-sorting schemes. IEEE Transactions on Computers, Vol. c-27, No. 7, pp. 669–673(July 1978).Google Scholar
  13. [13]
    S. Rajasekaran and J. Reif. Optimal and sublogarithmic time randomized parallel sorting algorithms. SIAM J. Comput. 18, pp. 594–607.Google Scholar
  14. [14]
    S. Rajasekaran and S. Sen. On parallel integer sorting. Acta Informatica 29, 1–15(1992).CrossRefGoogle Scholar
  15. [15]
    R. Raman. The power of collision: randomized parallel algorithms for chaining and integer sorting. Proc. 10th Conf. on Foundations of Software Technology and Theoretical Computer Science, Springer Lecture Notes in Computer Science, Vol. 472, pp. 161–175.Google Scholar
  16. [16]
    L. Valiant. Parallelism in comparison problems. SIAM J. Comput., 4, pp. 348–355(1975).CrossRefGoogle Scholar
  17. [17]
    R.A. Wagner and Y. Han. Parallel algorithms for bucket sorting and the data dependent prefix problem. Proc. 1986 International Conf. on Parallel Processing, pp. 924–930.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Yijie Han
    • 1
  • Xiaojun Shen
    • 2
  1. 1.Electronic Data Systems, Inc.Romulus
  2. 2.Computer Science Telecommunications ProgramUniversity of Missouri - Kansas CityKansas City

Personalised recommendations