Advertisement

Shortest paths in random weighted graphs

  • Scott K. Walley
  • Harry H. Tan
Session 4A: Graph Algorithms
Part of the Lecture Notes in Computer Science book series (LNCS, volume 959)

Abstract

We consider the probability distribution of the cost of shortest paths and the diameter in a complete, weighted digraph with non-negative random edge costs. Asymptotic results as the number of nodes goes to infinity are developed and applied to extend several probabilistic shortest path algorithms to edge cost distributions having a general Taylor's series at zero edge cost.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. K. Ahuja, K. Mehlhorn, J. B. Orlin, and R. E. Tarjan: Faster Algorithms for the Shortest Path Problem. Technical Report CS-TR-154-88, Department of Computer Science, Princeton University. (1988)Google Scholar
  2. 2.
    P.A. Bloniarz: A shortest-path algorithm with expected time O(n 2 log n log* n). Technical Report 80-3, Dept. of Computer Science, State Univ. of New York at Albany. (1980)Google Scholar
  3. 3.
    M. L. Fredman and R. E. Tarjan: Fibonacci heaps and their uses in improved network optimization algorithms. J. Assoc. Comput. Mach. 34 (1987) 596–615Google Scholar
  4. 4.
    A. M. Frieze and G. R. Grimmett: The shortest-path problem for graphs with random arc-lengths. Discrete Appl. Math. 10 (1985) 57–77CrossRefGoogle Scholar
  5. 5.
    G. Gallo and S. Pallottino: Shortest path algorithms. Annals of Oper. Res. 13 (1988) 3–79Google Scholar
  6. 6.
    A. V. Goldberg: Scaling algorithms for the shortest paths problem. Proc. 4th ACM-SIAM symposium of Discrete Algorithms. (1993) 222–231Google Scholar
  7. 7.
    Refael Hassin and Eitan Zemel: On shortest paths in graphs with random weights. Math. of Oper. Res. 10 (1985) 557–564Google Scholar
  8. 8.
    P. Spira: A new algorithm for finding all shortest paths in a graph of positive edges in average time O(n 2log2 n). SIAM J. Comput. 2 (1973) 28–32CrossRefGoogle Scholar
  9. 9.
    Scott K. Walley, Harry H. Tan, and Audrey M. Viterbi. Shortest path cost distribution in random graphs with positive integer edge costs. Proc. of IEEE INFO-COM'93. (1993) 1023–1032Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Scott K. Walley
    • 1
  • Harry H. Tan
    • 1
  1. 1.University of California, IrvineIrvineUSA

Personalised recommendations