Termination proofs using gpo ordering constraints

  • Thomas Genet
  • Isabelle Gnaedig
II CAAP CAAP-3: Termination
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1214)


We present here an algorithm for proving termination of term rewriting systems by gpo ordering constraint solving. The algorithm gives, as automatically as possible, an appropriate instance of the gpo generic ordering proving termination of a given system. Constraint solving is done efficiently thanks to a DAG shared term data structure.


  1. 1.
    H. Comon. Solving inequations in term algebras. In Proc. 5th LICS Symp., Philadelphia (Pa., USA), pages 62–69, June 1990.Google Scholar
  2. 2.
    N. Dershowitz and C. Hoot. Natural termination. TCS, 142(2):179–207, May 1995.CrossRefGoogle Scholar
  3. 3.
    N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, chapter 6, pages 244–320. Elsevier Science Publishers B. V. (North-Holland), 1990.Google Scholar
  4. 4.
    R. Forgaard and D. Detlefs. An incremental algorithm for proving termination of term rewriting systems. In J.-P. Jouannaud, editor, Proc. 1st RTA Conf., Dijon (France), pages 255–270. Springer-Verlag, 1985.Google Scholar
  5. 5.
    T. Genet and I. Gnaedig. Termination proofs using gpo ordering constraints (extended version). Technical report, INRIA, 1997. RR-3087, available at Scholar
  6. 6.
    J. Giesl. Generating polynomial orderings for termination proofs. In J. Hsiang, editor, Proc. 6th RTA Conf., Kaiserslautern (Germany), volume 914 of LNCS. Springer-Verlag, 1995.Google Scholar
  7. 7.
    P. Johann and R. Socher-Ambrosius. Solving simplification ordering constraints. In J.-P. Jouannaud, editor, Proc. 1st CCL Conf., Munich (Germany), volume 845 of LNCS, pages 352–367. Springer-Verlag, 1994.Google Scholar
  8. 8.
    S. Kamin and J.-J. Lévy. Attempts for generalizing the recursive path ordering. Unpublished manuscript, 1980.Google Scholar
  9. 9.
    D. S. Lankford. On proving term rewriting systems are noetherian. Technical report, Louisiana Tech. University, Mathematics Dept., Ruston LA, 1979.Google Scholar
  10. 10.
    P. Lescanne. On the recursive decomposition ordering with lexicographical status and other related orderings. JAR, 6:39–49, 1990.CrossRefGoogle Scholar
  11. 11.
    C. Lynch and P. Strogova. Sour graphs for efficient completion. Technical Report 95-R-343, CRIN, 1995.Google Scholar
  12. 12.
    R. Nieuwenhuis. Simple lpo constraint solving methods. IPL, 47(2), 1993.Google Scholar
  13. 13.
    R. Nieuwenhuis and A. Rubio. Theorem proving with ordering constrained clauses. In D. Kapur, editor, Proc. 11th CADE Conf., Saratoga Springs (N.Y., USA), volume 607 of LNCS, pages 477–491. Springer-Verlag, 1992.Google Scholar
  14. 14.
    D. Plaisted. Polynomial time termination and constraint satisfaction tests. In C. Kirchner, editor, Proc. 5th RTA Conf., Montreal (Canada), volume 690 of LNCS, pages 405–420, Montreal (Québec, Canada), June 1993. Springer-Verlag.Google Scholar
  15. 15.
    J. Steinbach. Generating polynomial orderings. IPL, 49:85–93, 1994.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Thomas Genet
    • 1
  • Isabelle Gnaedig
    • 1
  1. 1.INRIA Lorraine & CRIN CNRSVillers-lès-Nancy CedexFrance

Personalised recommendations