Advertisement

Autonomous virtual actors based on virtual sensors

  • Daniel Thalmann
  • Hansrudi Noser
  • Zhiyong Huang
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1195)

Abstract

In this paper, we present current research developments in the Virtual Life of autonomous synthetic actors. After a brief description of the perception action principles with a few simple examples, we emphasize the concept of virtual sensors for virtual humans. In particular, we describe in detail our experiences in implementing virtual vision, tactile, and audition. We then describe perception-based locomotion, a multisensor based method of automatic grasping, and vision-based ball games.

Keywords

Virtual World Sound Source Collision Detection Synthetic Actor Computer Animation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bandi S., Thalmann D. (1995) “An Adaptive Spatial Subdivision of the Object Space for Fast Collision Detection of Animated Rigid Bodies”. In: Proc. Eurographics '95, MaastrichtGoogle Scholar
  2. 2.
    Bates J, Loyall A.B., Reilly W.S. (1992) “An architecture for Action, Emotion, and Social Behavior”. In: Proc. Fourth Europeans Workshop on Modeling Autonomous Agents in a multi Agents World, S. Martino al Cimino, ItalyGoogle Scholar
  3. 3.
    Boulic R., Capin T., Kalra P., Lintermann B., Moccozet L., Molet T., Huang Z., Magnenat-Thalmann N., Saar K., Schmitt A., Shen J., Thalmann D. (1995) “A system for the Parallel Integrated Motion of Multiple Deformable Human Characters with Collision Detection”. In: Proc. Eurographics '95, MaastrichtGoogle Scholar
  4. 4.
    Boulic R., Huang Z., Magnenat-Thalmann N., Thalmann D. (1994) “Goal-Oriented Design and Correction of Articulated Figure Motion with the TRACK System”. Comput. & Graphics 18(4) pp. 443–452Google Scholar
  5. 5.
    Boulic R., Noser H., Thalmann D. (1993) “Vision-Based Human Free-Walking on Sparse Foothold Locations”. In: Proc. Fourth Eurographics Workshop on Animation and Simulation. Barcelona Spain, Eurographics, pp. 173–191Google Scholar
  6. 6.
    Boulic R., Noser H., Thalmann D. (1994b) “Automatic Derivation of Curved Human Walking Trajectories from Synthetic Vision”. In: Proc. Computer Animation '94, Geneva. IEEE Computer Society Press, pp. 93–103Google Scholar
  7. 7.
    Boulic R., Thalmann D, Magnenat-Thalmann N. (1990) “A global human walking model with real time kinematic personification”. The Visual Computer, 6(6) Google Scholar
  8. 8.
    Clark J.H. (1982) “The Geometric Engine: A VLSI Geometry System for Graphics”. In: Proc. SIGGRAPH '82, Computer Graphics 10(3) pp. 127–133Google Scholar
  9. 9.
    Crowley J.L. (1987) “Navigation for an Intelligent Mobile Robot”. IEEE Journal of Robotics and Automation RA-1(1), pp. 31–41Google Scholar
  10. 10.
    Elfes A. (1990) “Occupancy Grid: A Stochastic Spatial Representation for Active Robot Perception”. In: Proc. Sixth Conference on Uncertainty in AI Google Scholar
  11. 11.
    Espiau B., Boulic R. (1985) “Collision avoidance for redondants robots with proximity sensors”. In: Proc. of Third International Symposium of Robotics Research, Gouvieux, October 1985Google Scholar
  12. 12.
    Fujimoto A., Tanaka T., Iwata K. (1986) “ARTS: Accelerated Ray-Tracing System”. IEEE CG&A 6(4) pp. 16–26Google Scholar
  13. 13.
    Haumann D.R., Parent R.E. (1988) “The Behavioral Test-bed: Obtaining Complex Behavior from Simple Rules”. The Visual Computer 4(6) pp. 332–347Google Scholar
  14. 14.
    Horswill I. (1993) “A Simple, Cheap, and Robust Visual Navigation System”. In: From Animals to Animats 2, Proc. 2nd Intern. Conf. on Simulation of Adaptive Behavior. MIT Press, pp. 129–136Google Scholar
  15. 15.
    Huang Z., Boulic R., Magnenat Thalmann N., Thalmann D. (1995) “A Multisensor Approach for Grasping and 3D Interaction”. Proc. CGI '95 Google Scholar
  16. 16.
    Kuipers B., Byun Y.T. (1988) “A Robust Qualitative Approach to a Spatial Learning Mobile Robot”. SPIE Sensor Fusion: Spatial Reaoning and Scene Interpretation 1003 Google Scholar
  17. 17.
    Kunii T.L., Tsuchida Y., Matsuda H., Shirahama M., Miura S. (1993) “A model of hands and arms based on manifold mappings”. In: Proc. CGI '93. pp. 381–398Google Scholar
  18. 18.
    Lethebridge T.C. and Ware C. (1989) “A Simple Heuristically-based Method for Expressive Stimulus-response Animation”. Computers and Graphics 13(3) pp. 297–303Google Scholar
  19. 19.
    Maes P. (ed.) (1991) “Designing Autonomous Agents”, Bradford MIT PressGoogle Scholar
  20. 20.
    Magnenat-Thalmann N., Laperrière R., Thalmann D. (1988) “Joint-dependent local deformations for hand animation and object grasping”. In: Proc. of Graphics Interface '88 pp. 26–33Google Scholar
  21. 21.
    Magnenat-Thalmann N., Thalmann D. (1991) “Still Walking”, video, 1 minGoogle Scholar
  22. 22.
    Magnenat-Thalmann N., Thalmann D. (1994) “Creating Artificial Life in Virtual Reality”. In: Magnenat-Thalmann N., Thalmann D. (eds.) Artificial Life and Virtual Reality. John Wiley, Chichester, 1994, pp. 1–10Google Scholar
  23. 23.
    Magnenat-Thalmann N., Thalmann D. (1995) “Digital Actors for Interactive Television”. Proc. IEEE JulyGoogle Scholar
  24. 24.
    Mas S.R., Thalmann D. (1994) “A Hand Control and Automatic Grasping System for Synthetic Actors”. In: Proc. Eurographics '94. pp. 167–178Google Scholar
  25. 25.
    Noser H., Thalmann D. (1993) “L-System-Based Behavioral Animation”. In: Proc. Pacific Graphics '93 pp. 133–146Google Scholar
  26. 26.
    Noser H., Thalmann D., Turner R. (1992) “Animation based on the Interaction of L-systems with Vector Force Fields”. In: Proc. Computer Graphics International. In: Kunii T.L. (ed.): Visual Computing, Springer, Tokyo, pp. 747–761Google Scholar
  27. 27.
    Noser H., Renault O., Thalmann D., Magnenat Thalmann N. (1995) “Navigation for Digital Actors based on Synthetic Vision, Memory and Learning”. Pergamon Press Computers and Graphics 19(1) pp. 7–19Google Scholar
  28. 28.
    Noser H., Thalmann D. (1995) “Synthetic Vision and Audition for Digital Actors”. In: Proc. Eurographics '95, MaastrichtGoogle Scholar
  29. 29.
    Renault O., Magnenat Thalmann N., Thalmann D. (1990) “A Vision-based Approach to Behavioural Animation”. The Journal of Visualization and Computer Animation 1(1), pp. 18–21Google Scholar
  30. 30.
    Reynolds C. (1987) “Flocks, Herds, and Schools: A Distributed Behavioral Model”. In: Proc. SIGGRAPH '87. Computer Graphics 21(4) pp. 25–34Google Scholar
  31. 31.
    Reynolds C.W. (1993) “An Evolved, Vision-Based Behavioral Model of Coordinated Group Motion”. In: Meyer J.A. et al. (eds.) From Animals to Animats, Proc. 2nd International Conf. on Simulation of Adaptive Behavior, MIT Press, pp 384–392Google Scholar
  32. 32.
    Reynolds C.W. (1994) “An Evolved, Vision-Based Model of Obstacle Avoidance Behavior”. In: C.G. Langton (ed.), Artificial Life III, SFI Studies in the Sciences of Complexity Proc. Vol. XVII, Addison-WesleyGoogle Scholar
  33. 33.
    Ridsdale G. (1990) “Connectionist Modelling of Skill Dynamics”. Journal of Visualization and Computer Animation 1(2) pp. 66–72Google Scholar
  34. 34.
    Rijpkema H, Girard M. (1991) “Computer animation of knowledge-based human grasping”. In: Proc. SIGGRAPH'91 pp. 339–348Google Scholar
  35. 35.
    Roth-Tabak Y. (1989) “Building an Environment Model Using Depth Information”. Computer pp. 85–90Google Scholar
  36. 36.
    Sims K. (1994) “Evolving Virtual Creatures”. In: Proc. SIGGRAPH '94 Computer Graphics pp. 15–22Google Scholar
  37. 37.
    Sowa J.F. (1964) Conceptual Structures, Addison-WesleyGoogle Scholar
  38. 38.
    Tsuji S., Li S. (1993) “Memorizing and Representing Route Scenes”, In: Meyer J.A. et al. (eds.) From Animals to Animats, Proc. 2nd International Conf. on Simulation of Adaptive Behavior, MIT Press, pp. 225–232Google Scholar
  39. 39.
    Tu X., Terzopoulos D. (1994) “Artificial Fishes: Physics, Locomotion, Perception, Behavior”. In: Proc. SIGGRAPH '94, Computer Graphics pp. 42–48Google Scholar
  40. 40.
    Tu X., Terzopoulos D. (1994b) “Perceptual Modeling for the Behavioral Animation of Fishes”. In: Proc. Pacific Graphics '94, World Scientific Publishers, Singapore, pp. 165–178Google Scholar
  41. 41.
    Wilhelms J. (1990) “A “Notion” for Interactive Behavioral Animation Control”. IEEE Computer Graphics and Applications 10(3) pp. 14–22Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Daniel Thalmann
    • 1
  • Hansrudi Noser
    • 1
  • Zhiyong Huang
    • 1
  1. 1.Computer Graphics LabSwiss Federal Institute of TechnologyLausanneSwitzerland

Personalised recommendations