Advertisement

High-speed cryptography

Extended abstract
  • George Davida
  • René Peralta
Special Lecture
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1396)

Abstract

We present a new method for achieving high speed encryption and decryption using large-block cryptosystems. The method applies to both private and public key cryptosystems. The method amplifies the encrypting speed of any cryptosystem, and it is provably reducible to the latter.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexi, W., Chor, B., Goldreich, O., Schnorr, C.: RSA and /Rabin functions: certain parts are as hard as the whole. Siam Journal on Computing 17 (1988) 194–209.Google Scholar
  2. 2.
    Coppersmith, D., Franklin, M., Patarin, J., Reiter, M.: Low-exponent RSA with related messages. In Advances in Cryptology-Proceedings of EUROCRYPT 96 (1996) vol. 1070 of Lecture Notes in Computer Science, Springer-Verlag pp. 1–9.Google Scholar
  3. 3.
    Davio, M., Desmedt, Y., Goubert, J., Hoornaert, F., Quisquater, J.-J.: Efficient hardware and software implementations for the DES. In Advances in Cryptology — Proceedings of CRYPTO 84 (1985) Springer-Verlag pp. 144–146.Google Scholar
  4. 4.
    Everle, H.: A high-speed DES implementation for network applications. In Advances in Cryptology — Proceedings of CRYPTO 92 (1993) vol. 740 of Lecture Notes in Computer Science, pp. 521–539.Google Scholar
  5. 5.
    Hastad, J.: Solving simultaneous modular equations of low degree. SIAM Journal on Computing 17 (1988) 336–341.Google Scholar
  6. 6.
    Karatsuba, Ofman: Multiplication of multidigit numbers on automata (in russian). Doklady Akademii Nauk SSSR 145 (1962) 293–294.Google Scholar
  7. 7.
    Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48 (1987) 203–209.Google Scholar
  8. 8.
    Koyama, K., Maurer, U. M., Okamoto, T., Vanstone, S. A.: New public-key schemes based on elliptic curves over the ring z n. In Advances in Cryptology — Proceedings of CRYPTO 91 (1992) vol. 576 of Lecture Notes in Computer Science, pp. 252–266.Google Scholar
  9. 9.
    Maurer, U.: Factoring with an oracle. In Advances in Cryptology — Proceedings of EUROCRYPT 92 (1993) vol. 658 of Lecture Notes in Computer Science, Springer-Verlag pp. 429–436.Google Scholar
  10. 10.
    Menezes, A. J.: Elliptic curve public key cryptosystems. Kluwer Academic Publishers 1993.Google Scholar
  11. 11.
    Miller, V. S.: Use of elliptic curves in cryptography. In Advances in Cryptology — Proceedings of CRYPTO 85 (1986) vol. 218 of Lecture Notes in Computer Science, Springer-Verlag pp. 417–426.Google Scholar
  12. 12.
    Patarin, J.: Some serious protocol failures for RSA with exponent e of less than ≅ 32 bits. Cryptography conference, CIRM, Luminy, France 1995.Google Scholar
  13. 13.
    Peralta, R.: Simultaneous security of bits in the discrete log. In Advances in Cryptology — Proceedings of EUROCRYPT 85 (1986) Lecture Notes in Computer Science, Springer-Verlag pp. 62–72.Google Scholar
  14. 14.
    Verbauwhede, I., Hoornaeert, F., Vandewalle, J., Man, H. D.: Security and performance optimization of a new DES data encryption chip. IEEE journal of solid-state circuits 23 (1988) 647–656.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • George Davida
    • 1
  • René Peralta
    • 1
  1. 1.CCCNS, Electrical Engineering and Computer Science DepartmentUniversity of Wisconsin-MilwaukeeMilwaukeeUSA

Personalised recommendations