Advertisement

Combinatorial games with exponential space complete decision problems

  • J. M. Robson
Communications
Part of the Lecture Notes in Computer Science book series (LNCS, volume 176)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bauer M., Brand D., Fischer M., Meyer A. and Paterson M., A note on disjunctive form tautologies, SIGACT news, April 1973, pp 17–20.Google Scholar
  2. [2]
    Chandra A.K., Kozen D.A. and Stockmeyer L.J., Alternation, J. ACM, vol. 28, 1981, pp 114–133.Google Scholar
  3. [3]
    Fraenkel A.S. and Lichtenstein D., Computing a perfect strategy for n × n chess requires time exponential in n, J. Combinatorial Theory series A, vol. 31, 1981, pp 199–213.Google Scholar
  4. [4]
    Johnson D.S., The NP-Completeness Column: an ongoing guide, Journal of Algorithms, vol. 4, 1983, pp 397–411.Google Scholar
  5. [5]
    Lichtenstein D. and Sipser M., Go is polynomial-space hard, J. ACM, vol. 27, 1980, pp 393–401.Google Scholar
  6. [6]
    Reif J.H. and Peterson G.L., Multiple person alternation, in Proceedings of 20th annual symposium on foundations of computer science, IEEE Computer Society, 1979, pp 348–363.Google Scholar
  7. [7]
    Reif J.H., Universal games of incomplete information, in Proceedings of 11th annual ACM symposium of theory of computing, ACM, 1979, pp 288–308.Google Scholar
  8. [8]
    Robson J.M., The complexity of go, in Information Processing 83, R.E.A. Mason ed., IFIP, 1983, pp 413–418.Google Scholar
  9. [9]
    Robson J.M., N by N checkers is exptime complete, SIAM J. Comput., to appear.Google Scholar
  10. [10]
    Stockmeyer L.J. and Chandra A.K., Provably difficult combinatorial games, SIAM J. Comput, vol. 8, 1979, pp 151–174.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • J. M. Robson
    • 1
  1. 1.Australian National UniversityCanberraAustralia

Personalised recommendations