Combinatorial games with exponential space complete decision problems

  • J. M. Robson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 176)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bauer M., Brand D., Fischer M., Meyer A. and Paterson M., A note on disjunctive form tautologies, SIGACT news, April 1973, pp 17–20.Google Scholar
  2. [2]
    Chandra A.K., Kozen D.A. and Stockmeyer L.J., Alternation, J. ACM, vol. 28, 1981, pp 114–133.Google Scholar
  3. [3]
    Fraenkel A.S. and Lichtenstein D., Computing a perfect strategy for n × n chess requires time exponential in n, J. Combinatorial Theory series A, vol. 31, 1981, pp 199–213.Google Scholar
  4. [4]
    Johnson D.S., The NP-Completeness Column: an ongoing guide, Journal of Algorithms, vol. 4, 1983, pp 397–411.Google Scholar
  5. [5]
    Lichtenstein D. and Sipser M., Go is polynomial-space hard, J. ACM, vol. 27, 1980, pp 393–401.Google Scholar
  6. [6]
    Reif J.H. and Peterson G.L., Multiple person alternation, in Proceedings of 20th annual symposium on foundations of computer science, IEEE Computer Society, 1979, pp 348–363.Google Scholar
  7. [7]
    Reif J.H., Universal games of incomplete information, in Proceedings of 11th annual ACM symposium of theory of computing, ACM, 1979, pp 288–308.Google Scholar
  8. [8]
    Robson J.M., The complexity of go, in Information Processing 83, R.E.A. Mason ed., IFIP, 1983, pp 413–418.Google Scholar
  9. [9]
    Robson J.M., N by N checkers is exptime complete, SIAM J. Comput., to appear.Google Scholar
  10. [10]
    Stockmeyer L.J. and Chandra A.K., Provably difficult combinatorial games, SIAM J. Comput, vol. 8, 1979, pp 151–174.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • J. M. Robson
    • 1
  1. 1.Australian National UniversityCanberraAustralia

Personalised recommendations