Advertisement

Factoring multivariate polynomials over algebraic number fields

  • Arjen K. Lenstra
Communications
Part of the Lecture Notes in Computer Science book series (LNCS, volume 176)

Abstract

We present an algorithm to factor multivariate polynomials over algebraic number fields that is polynomial-time in the degrees of the polynomial to be factored. The algorithm is an immediate generalization of the polynomial-time algorithm to factor univariate polynomials with rational coefficients.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E.R. Berlekamp, Factoring polynomials over large finite fields, Math. Comp. 24 (1970), 713–735.Google Scholar
  2. 2.
    W.S. Brown, The subresultant PRS algorithm, ACM Transactions on mathematical software 4 (1978), 237–249.Google Scholar
  3. 3.
    A.O. Gel'fond, Transcendental and algebraic numbers, Dover Publ., New York 1960.Google Scholar
  4. 4.
    G.H. Hardy, E.M.Wright, An introduction to the theory of numbers, Oxford University Press 1979.Google Scholar
  5. 5.
    D.E. Knuth, The art of computer programming, vol. 2, Seminumerical algorithms, Addison-Wesley, Reading, second edition 1981.Google Scholar
  6. 6.
    A.K. Lenstra, Lattices and factorization of polynomials over algebraic number fields, Proceedings Eurocam 82, LNCS 144, 32–39.Google Scholar
  7. 7.
    A.K. Lenstra, H.W. Lenstra, Jr., L. Lovász, Factoring polynomials with rational coefficients, Math. Ann. 261 (1982), 515–534.Google Scholar
  8. 8.
    A.K. Lenstra, Factoring polynomials over algebraic number fields, Report IW 213/82, Mathematisch Centrum, Amsterdam 1982 (also Proceedings Eurocal 83, LNCS 162, 245–254).Google Scholar
  9. 9.
    A.K. Lenstra, Factoring multivariate polynomials over finite fields, Report IW 221/83, Mathematisch Centrum, Amsterdam 1983 (also Proceedings 15th STOC, 189–192).Google Scholar
  10. 10.
    A.K. Lenstra, Factoring multivariate integral polynomials, Report IW 229/83, Mathematisch Centrum, Amsterdam 1983 (also Proceedings 10th ICALP, LNCS 154, 458–465).Google Scholar
  11. 11.
    A.K. Lenstra, Factoring multivariate integral polynomials, II, Report IW 230/83, Mathematisch Centrum, Amsterdam 1983.Google Scholar
  12. 12.
    M. Mignotte, An inequality about factors of polynomials, Math. Comp. 28 (1974), 1153–1157.Google Scholar
  13. 13.
    J. Stoer, Einführung in die numerische Mathematik I, Springer, Berlin 1972.Google Scholar
  14. 14.
    P.S. Wang, Factoring multivariate polynomials over algebraic number fields, Math. Comp. 30 (1976), 324–336.Google Scholar
  15. 15.
    P.J. Weinberger, L.P. Rothschild, Factoring polynomials over algebraic number fields, ACM Transactions on mathematical software 2 (1976), 335–350.Google Scholar
  16. 16.
    D.Y.Y. Yun, The Hensel lemma in algebraic manipulation, MIT, Cambridge 1974; reprint: Garland Publ. Co., New York 1980.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • Arjen K. Lenstra
    • 1
  1. 1.Centrum voor wiskunde en informaticaAmsterdamThe Netherlands

Personalised recommendations