Recent results on automata and infinite words

  • Dominique Perrin
Invited Lectures
Part of the Lecture Notes in Computer Science book series (LNCS, volume 176)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Arnold, A., 1983, Rational ω-languages are non-ambiguous, Theoret. Comput. Sci., 26, 221–224.Google Scholar
  2. [2]
    Arnold, A., 1984, A syntactic congruence for rational ω-languages, to appear in Theoret. Comput. Sci. Google Scholar
  3. [3]
    Beauquier, D., 1984, Bilimites de langages reconnaissables, to appear in Theoret. Comput. Sci. Google Scholar
  4. [4]
    Beauquier, D., Perrin, D., 1984, Automates codeterministes sur les mots infinis, to appear.Google Scholar
  5. [5]
    Compton, L., 1984, in Progress in Combinatorics on Words, Academic Press.Google Scholar
  6. [6]
    Büchi, J.R., 1962, On a decision method in restricted second order arithmetic, in Logic, Methodology and Philosophy of Science, (Proc. 1960 Internat. Congr.), Stanford University Press, Stanford, Calif., 1–11.Google Scholar
  7. [7]
    Eilenberg, S., 1974, Automata, Languages and Machines, Vol. A, Academic Press, New York, Vol. B, 1976.Google Scholar
  8. [8]
    Lallement, G., 1979, Semigroups and Combinatorial Applications, Wiley.Google Scholar
  9. [9]
    Landweber, L.H., 1969, Decision problems for ω-automata, Math. Syst. Theory, 3, 376–384.Google Scholar
  10. [10]
    McNaughton, R., 1966, Testing and generating infinite sequences by a finite automaton, Information and Control, 9, 521–530.Google Scholar
  11. [11]
    Mostowski, A., 1982, Determinancy of sinking automata on infinite trees and inequalities between various Rabin's pair indices, Information Processing Letters, 15, 159–163.Google Scholar
  12. [12]
    Nivat, M., Perrin D., 1982, Ensembles reconnaissables de mots biinfinis, Proc. 14th ACM Symp. on Theory of Computing, 47–59.Google Scholar
  13. [13]
    Pécuchet, J.P., 1983, Automates boustrophédons et mots infinis, à paraitre dans Theoret. Comput. Sci. Google Scholar
  14. [14]
    Perrin D., Variétés de langages et mots infinis, C.R. Acad. Sci. Paris, 295, 595–598.Google Scholar
  15. [15]
    Pin, J.E., Variétés de langages formels, Masson, 1984.Google Scholar
  16. [16]
    Schützenberger, M.P., 1972, Sur les relations rationnelles fonctionnelles, in Automata, Languages and Programming (M. Nivat ed.) North Holland, 103–114.Google Scholar
  17. [17]
    Thomas, W., 1979, Star free regular sets of ω-sequences, Inform. Control, 42, 148–156.Google Scholar
  18. [18]
    Thomas, W., 1981, A combinatorial approach to the theory of ω-automata, Inform. Control, 48, 261–283.Google Scholar
  19. [19]
    Thomas, W., 1982, A hierarchy of sets of infinite trees, in Theoretical Computer Science, Springer Lecture Notes on Comput. Sci., 145. Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • Dominique Perrin
    • 1
  1. 1.L.I.T.P., Université Paris 7Paris Cedex 05France

Personalised recommendations