Shared memory and message passing implementations of parallel algorithms for numerical integration

  • T. L. Freeman
  • J. M. Bull
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 879)


Parallel globally adaptive algorithms for numerical integration provide a simple example of algorithms that exploit control parallelism. In this paper we consider the implementation of such algorithms on two distributed memory machines — the KSR-1 which supports a shared memory programming model and the Intel iPSC/860 which supports a message passing programming model. We investigate how the characteristics of the different machines affect the choice of implementation and thereby the performances of the algorithms.


Parallel adaptive quadrature Distributed memory machines Virtual shared memory machines Shared memory programming paradigm Message passing programming paradigm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bokhari, S. H. (1990) Communication overhead on the Intel iPSC-860 hypercube, ICASE interim report 10, ICASE, NASA Langley Research Center, Hampton, Virginia.Google Scholar
  2. [2]
    Bull, J. M. and Freeman, T. L. (1994) Parallel Globally Adaptive Quadrature on the KSR-1, to appear in Advances in Computational Mathematics.Google Scholar
  3. [3]
    Bull, J. M. and Freeman, T. L. (1994) Parallel Algorithms and Interval Selection Strategies for Globally Adaptive Quadrature, to appear in Proceedings of PARLE'94.Google Scholar
  4. [4]
    Bull, J. M. and Freeman, T. L. (1994) Parallel Algorithms for Numerical Integration in One and Several Dimensions, submitted to Proceedings of CWI — RUU Symposium on Massively Parallel Computing and Applications, ed H. te Riele and H. Van der Vorst, CWI Tracts, Amsterdam.Google Scholar
  5. [5]
    Genz, A. C. and Malik, A. A. (1980) Remarks on Algorithm 006: An Adaptive Algorithm for Numerical Integration over an N-dimensional Rectangular Region, J. Comput. Appl. Math. 6, pp. 295–302.Google Scholar
  6. [6]
    Hockney, R. (1992) A Framework for Benchmark Performance Analysis, Supercomputer, 48, pp. 9–22.Google Scholar
  7. [7]
    Intel (1991) iPSC/2 and iPSC/860 Programmer's Reference Manual, Order No. 311708-004, Intel Scientific Computers, Beaverton, OR.Google Scholar
  8. [8]
    K.S.R. (1991) KSR Fortran Programming, Kendall Square Research, Waltham, Mass.Google Scholar
  9. [9]
    K.S.R. (1993) KSR Parallel Programming, Kendall Square Research, Waltham, Mass.Google Scholar
  10. [10]
    Lapenga, M. and D'Alessio, A. (1993) A Scalable Parallel Algorithm for the Adaptive Multidimensional Quadrature, pp. 933–936 of [14].Google Scholar
  11. [11]
    N.A.G. (1991) N.A.G. Fortran Library Manual, Mark 15, N.A.G. Ltd., Oxford.Google Scholar
  12. [12]
    Piessens, R., de Doncker, E., Überhuber, C. and Kahaner, D. (1983) QUADPACK, A Subroutine Package for Automatic Integration, Springer-Verlag.Google Scholar
  13. [13]
    Ramachandran, U., Shah, G., Ravikumar, S., and Muthukumarasamy, J. (1993) Scalability Study of the KSR-1, Technical Report No. GIT-CC 93/03, College of Computing, Georgia Institute of Technology, Atlanta.Google Scholar
  14. [14]
    Sinovec, R. F., Keyes, D. E., Leuze, M. R., Petzold, L. R. and Reed, D. A. (eds.) (1993) Proceedings of the Sixth SIAM Conference on Parallel Processing, SIAM, Philadelphia.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • T. L. Freeman
    • 1
  • J. M. Bull
    • 1
  1. 1.Department of Mathematics & Centre for Novel ComputingUniversity of ManchesterManchester

Personalised recommendations