Communication complexity and sequential computation

  • Juraj Hromkovič
  • Georg Schnitger
Invited Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1295)


The communication complexity of two-party protocols introduced by Abelson and Yao is one of the most intensively studied complexity measures for computing problems. This is a consequence of the relation of communication complexity to many fundamental (mainly parallel) complexity measures. This paper focuses on the relation between communication complexity and the following three complexity measures of sequential computation:
  • the size of finite automata,

  • the time- and space-complexity measures of Turing machines and

  • the time- and space-complexity for data structure problems.

We present a survey of the known relations between communication complexity and these three problem areas and formulate several open problems for further research.


computational and structural complexity Las Vegas determinism communication complexity automata 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abelson, H., Lower bounds on information transfer in distributed computations. Proc. 19th Annual Symp. on Foundations of Computer Science, 151–158, 1978.Google Scholar
  2. 2.
    Aho, A.V., Ullman, J.D., Yannakakis, M., On notions of informations transfer in VLSI circuits. Proc. 15th Annual ACM Symp. on Theory of Computing, 133–139, 1983.Google Scholar
  3. 3.
    Babai, L., Nisan, N., Szegedy, M., Multiparty protocols and logspace-hard pseudo-random sequences. Proc. 21st Annual ACM Symp. on Theory of Computing, 1–11, 1989.Google Scholar
  4. 4.
    Beame, P., A general sequential time-space trade-off for finding unique elements. Proc. 21st Annual ACM Symp. on Theory of Computing, 197–203, 1989.Google Scholar
  5. 5.
    Cobham, A., The intrinsic computational difficulty of functions. Proc. 1964 Congress for Logic, Mathematics and Philosophy of Science, North Holland, 24–30, 1964.Google Scholar
  6. 6.
    Dietzfelbinger, M., The linear-array problem in communication complexity resolved. To appear in Proc. 29th Annual ACM Symp. on Theory of Computing, 1997.Google Scholar
  7. 7.
    Dietzfelbinger, M., Hromkovic, J., Schnitger, G., A comparison of two lower bounds methods for communication complexity. Theo. Comp. Sci. 168 (1), 39–51, 1996.CrossRefGoogle Scholar
  8. 8.
    Dietzfelbinger, M., Maass, W., Schnitger, G., The complexity of matrix transposition on one-tape Turing machines. Theoretical Computer Science, 82(1), 113–129, 1991.CrossRefGoogle Scholar
  9. 9.
    Ďuriš P., Hromkovič, J., Rolim, J., Schnitger, G., Las Vegas versus determinism for one-way communication complexity, finite automata, and polynomial-time computations. Proc. Symp. on Theoretical Aspects of Computer Science, Lecture Notes in Computer Science 1200, Springer-Verlag,117–128, 1997.Google Scholar
  10. 10.
    Gurevich, Y., On Kolmogorov machines and related issues. Bulletin of the European Association for Theoretical Computer Science, 1988.Google Scholar
  11. 11.
    Gr"oger, H.D., Turan, G., On linear decision trees computing Boolean Functions. Proc. 18th International Colloquium on Automata, Languages and Programming, 707–718, 1991.Google Scholar
  12. 12.
    Gr"oger, H.D., Turan, G., A linear lower bound for the size of threshold circuits. Bulletin of the European Association for Theoretical Computer Science. 1993.Google Scholar
  13. 13.
    Hopkroft, J.E., Ullman, J.D., Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, 1979.Google Scholar
  14. 14.
    Hromkovič, J., Relation between Chomsky hierarchy and communication complexity hierarchy. Acta Math. Univ. Com. (48–49), 311–317, 1986.Google Scholar
  15. 15.
    Hromkovič, J.: Communication Complexity and Parallel Computing. Springer-Verlag 1997.Google Scholar
  16. 16.
    Kalyanasundaram, B., Schnitger, G., The probabilistic communication complexity of set intersection. SIAM J. on Discrete Math. 5(4), 1992.Google Scholar
  17. 17.
    Kalyanasundaram, B., Schnitger, G., Communication complexity and lower bounds for sequential machines. In: Festschrift zum 60. Geburtstag von Günter Hotz, Teubner Verlag, 840–849, 1992.Google Scholar
  18. 18.
    Karchmer, M., Wigderson, A., Monotone circuits for connectivity require super-logarithmic depth, SIAM J. on Disc. Math., 718–727, 1990.Google Scholar
  19. 19.
    Kolmogorov, A. N., Uspenskij, V. A., On the definition of an algorithm. Russian Math. Surveys 30, 217–245, 1963.Google Scholar
  20. 20.
    Kushilevitz E., Nisan N., Communication Complexity. Cambridge University Press 1997.Google Scholar
  21. 21.
    Lengauer, Th., VLSI Theory. In: Handbook of Theoretical Computer Science, Vol. A, Algorithms and Complexity, Elsevier, 835–868, 1990.Google Scholar
  22. 22.
    Li, M., Longpre, L., Vitanyi, P.M.B., On the Power of the Queue. Structure in Complexity Theory, Lecture Notes in Computer Science, vol. 223, 219–223, 1986.Google Scholar
  23. 23.
    Maass, W., Quadratic lower bounds for deterministic and nondeterministic one-Tape Turing machines. Proc. 16th Annual ACM Symp. on Theory of Computing, 401–408, 1984.Google Scholar
  24. 24.
    Maass, W., Schnitger, G., Szemeredi, E., Turan, G., Two tapes are better than one for off-line Turing machines. Computational Complexity 3, 392–401, 1993.CrossRefGoogle Scholar
  25. 25.
    Lipton, R. J., Tarjan, R. E., Applications of a planar separator theorem. SIAM J. Computing 9, 615–627, 1980.CrossRefGoogle Scholar
  26. 26.
    Lovász, L., Communication Complexity: A Survey. In: Paths, Flow and VLSI Layout (Korte, LovAsz, Pr"omel, and Schrijver, eds.), Springer-Verlag, 235–266, Berlin 1990.Google Scholar
  27. 27.
    Mehlhorn, K., Schmidt, E., Las Vegas is better than determinism in VLSI and distributed computing. Proc. 14th Annual ACM Symp. on Theory of Computing, 330–337, 1982.Google Scholar
  28. 28.
    Micali, S., Two-way deterministic finite automata are exponentially more succinct than sweeping automata. Information Processing Letters 12(2), 103–105, 1981.CrossRefGoogle Scholar
  29. 29.
    Miltersen, P.B., Lower bounds for union-split-find related related problems on random access machines. Proc. 26th Annual ACM Symp. on Theory of Computing, 625–634, 1994.Google Scholar
  30. 30.
    Miltersen, P.B., Nisan, N., Safra, S., Wigderson, A., On data structures and asymmetric communication complexity. Proc. 27th Annual ACM Symp. on Theory of Computing, 103–111, 1995.Google Scholar
  31. 31.
    Nisan, N., The communication complexity of threshold gates. Technical Report, Dept. of Comp. Sci., Hebrew Univ., 1994.Google Scholar
  32. 32.
    Nisan, N., Wigderson, A.: On rank versus communication complexity. Combinatorica 15, 557–565, 1995.CrossRefGoogle Scholar
  33. 33.
    Orlitsky, A., El Gamal, A., Communication Complexity, In: Complexity in Information Theory (Y. Abu-Mostafa, ed.), Springer-Verlag 1988.Google Scholar
  34. 34.
    Raz, R., Wigderson, A., Monotone circuits for matching require linear depth, J. of the ACM 39(3), 736–744, 1992.CrossRefGoogle Scholar
  35. 35.
    Razborov A.A., On the distributed complexity of disjointness, Theo. Comput. Sci. 106(2), 385–390, 1992.CrossRefGoogle Scholar
  36. 36.
    Roychowdhury, V.P., Orlitzky, Sin K.Y., Lower bounds on threshold and related circuits via communication complexity. IEEE Transactions on Information Theory, 1994.Google Scholar
  37. 37.
    Schönhage, A. A., Storage modification machines. SIAM J. Computing 9, 490–508, 1980.CrossRefGoogle Scholar
  38. 38.
    Thompson, C.D., A complexity theory for VLSI, Doctoral dissertation. CMU-CS80-140, Computer Science Department, Carnegie-Mellon University, Pittsburgh, August 1980.Google Scholar
  39. 39.
    Turan, G., On the complexity of planar Boolean circuits. Computational Complexity, 1995.Google Scholar
  40. 40.
    Ullman, J. D., Computational Aspects of VLSI. Computer Science Press, 1984.Google Scholar
  41. 41.
    Wigderson, A., Information theoretic reasons for computational difficulty or communication complexity for circuit complexity. Proc. of the International Congress of Mathematicians, 1537–1548, 1990.Google Scholar
  42. 42.
    Yannakakis, M., Expressing combinatorial optimization problems by linear programs, J. of Comput. Syst. Sci. 43(3), 441–466, 1991.CrossRefGoogle Scholar
  43. 43.
    Yao, A. C., Some complexity questions related to distributive computing. Proc. 11th Annual ACM Symp. on Theory of Computing, 209–213, 1979.Google Scholar
  44. 44.
    Yao, A.C., Should tables be sorted? J. of ACM 28, 615–628, 1981.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Juraj Hromkovič
    • 1
  • Georg Schnitger
    • 2
  1. 1.Lehrstuhl für Informatik IRWTH AachenAachenGermany
  2. 2.Fachbereich InformatikJohann Wolfgang Goethe-Universität FrankfurtFrankfurt am MainGermany

Personalised recommendations