Covering a string

  • Costas S. Iliopoulos
  • Dennis W. G. Moore
  • Kunsoo Park
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 684)


We consider the problem of finding the repetitive structures of a given string x. The period u of the string x grasps the repetitiveness of x, since x is a prefix of a string constructed by concatenations of u. We generalize the concept of repetitiveness as follows: A string w covers a string x if there exists a string constructed by concatenations and superpositions of w of which x is a substring. A substring w of x is called a seed of x if w covers x. We present an O(n log n) time algorithm for finding all the seeds of a given string of length n.


Combinatorial algorithms on words string algorithms periodicity of strings covering of strings partitioning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. V. Aho, J. E. Hopcroft and J. D. Ullman, “The Design and Analysis of Computer Algorithms,” Addison-Wesley, 1974.Google Scholar
  2. [2]
    A. Apostolico and A. Ehrenfeucht, Efficient detection of quasiperiodicities in strings, to appear in Theoret. Comput. Sci. Google Scholar
  3. [3]
    A. Apostolico, M. Farach and C. S. Iliopoulos, Optimal superprimitivity testing for strings, Inform. Process. Lett. 39 (1991), 17–20.Google Scholar
  4. [4]
    A. Apostolico and F. P. Preparata, Optimal off-line detection of repetitions in a string, Theoret. Comput. Sci. 22 (1983), 297–315.Google Scholar
  5. [5]
    A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeucht, M. T. Chen and J. Seiferas, The smallest automaton recognizing the subwords of a text, Theoret. Comput. Sci. 40 (1985), 31–55.Google Scholar
  6. [6]
    M. Crochemore, An optimal algorithm for computing the repetitions in a word, Inform. Process. Lett. 12 (1981), 244–250.Google Scholar
  7. [7]
    M. Crochemore, Transducers and repetitions, Theoret. Comput. Sci. 45 (1986), 63–86.Google Scholar
  8. [8]
    J. E. Hopcroft, An n log n algorithm for minimizing states in a finite automaton, in Kohavi and Paz, ed., “Theory of Machines and Computations,” Academic Press, New York, 1971, pp. 189–196.Google Scholar
  9. [9]
    D. E. Knuth, J. H. Morris aud V. R. Pratt, Fast pattern matching in strings, SIAM J. Comput. 6 (1977), 323–350.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Costas S. Iliopoulos
    • 1
    • 2
  • Dennis W. G. Moore
    • 2
  • Kunsoo Park
    • 1
  1. 1.Department of Computer ScienceKing's College LondonStrand, LondonUK
  2. 2.School of ComputingCurtin UniversityPerthAustralia

Personalised recommendations