Gentzen type axiomatization for PAL

  • Igor Walukiewicz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 452)


The aim of propositional algorithmic logic (PAL) is to investigate properties of simple nondeterministic while-program schemes on propositional level. We present finite, cut-free, Gentzentype axiomatization of PAL. As a corollary from completeness theorem we obtain small model theorem and algorithm for checking validity of PAL formulas


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fisher M. J. and Ladner R. E., Propositional dynamic logic of regular programs, J. Comput. Syst. Sci. 18 194–211.Google Scholar
  2. 2.
    Harel D., Dynamic Logic, Handbook of Philosophical Logic Vol 11, 197–604 (1984)Google Scholar
  3. 3.
    Mirkowska G., PAL — propositional algorithmic logic, Fund Informaticae 4, 675–760. Also in Lecture Notes in Computer Science, Vol 125, Springler-Verlag pp.23–101 (1981)Google Scholar
  4. 4.
    Nishimura H., Sequential Method in Propositional Dynamic Logic, Acta Informatica 12, pp. 377–400 (1979)Google Scholar
  5. 5.
    Nishimura H., Semantical Analysis of Constructive PDL, Publ. Res. Inst. Math. Sci. Kyoto Univ. (1981)Google Scholar
  6. 6.
    Salwicki A., Formalized algorithmic languages, Bull. Acad. Polon Sci. Ser Sci. Math. Astron. Phys. 18, pp. 227–232 (1970)Google Scholar
  7. 7.
    Streett R.S., Propositional dynamic logic of looping and converse is elementary decidable, Inf. and Control 54 pp. 121–141. (1982)Google Scholar
  8. 8.
    Walukiewicz I. Decision procedure for checking validity of PAL formulas to appear in Proceedings of IMYCS 90, Springer-Verlag.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Igor Walukiewicz
    • 1
  1. 1.Institute of InformaticsWarsaw UniversityWarszawaPoland

Personalised recommendations