Advertisement

Typed horn logic (extended abstract)

  • Axel Poigné
Communications
Part of the Lecture Notes in Computer Science book series (LNCS, volume 452)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Benecke-Reichel 83]
    K.Benecke, H.Reichel, Equational Partiality, Algebra Universalis 16, 1983Google Scholar
  2. [Burmeister 86]
    P. Burmeister, A Model Theoretic Oriented Approach to Partial Algebras, Part I, Akademie Verlag, Berlin, 1986Google Scholar
  3. [Cartmell 78]
    J.Cartmell, Generalised algebraic Theories and Contextual Categories, PhD thesis, Oxford, Short version: Annals Pure Appl. Logic 32, 1986Google Scholar
  4. [Coquand 83]
    Th.Coquand, Une Théorie des Constructions, Thèse 3ème Cycle, Paris 1985Google Scholar
  5. [Coquand-Huet 85]
    Th.Coquand, G.Huet, Constructions, A higher Order Proof System for Mechanizing Mathematics. In. B. Buchberger(ed.) EUROCAL '85 Proceedings, LNCS 203, 1985Google Scholar
  6. [Coste 76]
    M.Coste, Une Approche Logique des Théories Definissable par Limites Projectives Finies, Manuscript 1976Google Scholar
  7. [Fourman-Scott 77]
    Sheaves and Logic, In: Applications of Sheaves, Proc. Durham, LNiMath 753, 1979Google Scholar
  8. [Freyd 72]
    P.Freyd, Aspects of Topoi, Bull. Austral. Math. Soc. 7, 1972Google Scholar
  9. [Gabriel-Ulmer 71]
    P.Gabriel, F.Ulmer, Lokal präsentierbare Kategorien, LNiMath 221, 1971Google Scholar
  10. [Gogolla 83]
    M.Gogolla, Algebraic Specifications with Subsorts and Declarations, FB Nr. 169, Abt.Informatik, Universität Dortmund, 1983, also: Proceedings CAAP'84, Cambridge University Press, 1984Google Scholar
  11. [Goguen 78]
    J.A.Goguen, Order Sorted Algebras, UCLA Comp. Sci. Dept., Semantics and Theory of Comp. Rep. 14, 1978Google Scholar
  12. [Goguen-Meseguer 85]
    J.A.Goguen, J.Meseguer, Order-Sorted Algebra: Partial and Overloaded Operations, Errors and Inheritance, SRI International, Computer Science Lab, to appearGoogle Scholar
  13. [Harper-Honsell-Plotkin 87]
    R.Harper, F.Honsell, G.Plotkin, A Framework for Defining Logics, Proc. LICS87Google Scholar
  14. [Mahr-Makowsky] [Makokai-Reyes 77]
    M.Makkei, G.E.Reyes, First Order Categorical Logic, LNi.Math 611, Springer 1977Google Scholar
  15. [Manca, Salibra,Scollo88]
    V.Manca, A.Salibra, G.Scollo, DELTA: A Deduction System Integrating Equational Logic and Type Assignment, Draft 1988Google Scholar
  16. [Mosses 89]
    P.Mosses, Unified Algebras and modules, In POPL'89, ACM, 1989Google Scholar
  17. [Poigné 84]
    A.Poigné, Another Look at Parameterization Using Algebraic Specifications with Subsorts, Proc. MFCS, LNCS 176, 1984Google Scholar
  18. [Poigné 86]
    A.Poigné, On relating Partiality and Subsorting, Manuscript 1986Google Scholar
  19. [Poigné 88]
    A.Poigné, Partial Algebras, Subsorting, and Dependent Types, Proc. 6th Workshop on Abstract Data Types, Gullane 1987, LNCS 332, 1988, Full Version 1989 (Submitted)Google Scholar
  20. [Scott 77]
    D.S.Scott, Identity and Existence in Intutionistic Logic, In: Applications of Sheaves, Proc. Durham, LNiMath 753, 1979Google Scholar
  21. [Smolka 86]
    G.Smolka, Order-Sorted Horn Logic Semantics and Deduction, SEKI-Rep. SR-86-17, Universität Kaiserslautern 1986Google Scholar
  22. [Smolka&al 88]
    G.Smolka, W.Nutt, J.A.Goguen, J.Meseguer, Order-Sorted Equational Computation, To appear in: H.Ait-Kaci, M.Nivat (eds.) Resolution of Equations in Algebraic Structures, Academic Press 1988Google Scholar
  23. [Smolka 88]
    G. Smolka, Logic Programming with Polymorphically Order-Sorted Types, In: J. Grabowski, P. Lescanne, W. Wechler, Algebraic and Logic Programming, Akademie Verlag, Berlin 1988Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Axel Poigné
    • 1
  1. 1.GMD F2G2, Schloss BirlinghovenSt. Augustin 1

Personalised recommendations