Typed horn logic (extended abstract)

  • Axel Poigné
Part of the Lecture Notes in Computer Science book series (LNCS, volume 452)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Benecke-Reichel 83]
    K.Benecke, H.Reichel, Equational Partiality, Algebra Universalis 16, 1983Google Scholar
  2. [Burmeister 86]
    P. Burmeister, A Model Theoretic Oriented Approach to Partial Algebras, Part I, Akademie Verlag, Berlin, 1986Google Scholar
  3. [Cartmell 78]
    J.Cartmell, Generalised algebraic Theories and Contextual Categories, PhD thesis, Oxford, Short version: Annals Pure Appl. Logic 32, 1986Google Scholar
  4. [Coquand 83]
    Th.Coquand, Une Théorie des Constructions, Thèse 3ème Cycle, Paris 1985Google Scholar
  5. [Coquand-Huet 85]
    Th.Coquand, G.Huet, Constructions, A higher Order Proof System for Mechanizing Mathematics. In. B. Buchberger(ed.) EUROCAL '85 Proceedings, LNCS 203, 1985Google Scholar
  6. [Coste 76]
    M.Coste, Une Approche Logique des Théories Definissable par Limites Projectives Finies, Manuscript 1976Google Scholar
  7. [Fourman-Scott 77]
    Sheaves and Logic, In: Applications of Sheaves, Proc. Durham, LNiMath 753, 1979Google Scholar
  8. [Freyd 72]
    P.Freyd, Aspects of Topoi, Bull. Austral. Math. Soc. 7, 1972Google Scholar
  9. [Gabriel-Ulmer 71]
    P.Gabriel, F.Ulmer, Lokal präsentierbare Kategorien, LNiMath 221, 1971Google Scholar
  10. [Gogolla 83]
    M.Gogolla, Algebraic Specifications with Subsorts and Declarations, FB Nr. 169, Abt.Informatik, Universität Dortmund, 1983, also: Proceedings CAAP'84, Cambridge University Press, 1984Google Scholar
  11. [Goguen 78]
    J.A.Goguen, Order Sorted Algebras, UCLA Comp. Sci. Dept., Semantics and Theory of Comp. Rep. 14, 1978Google Scholar
  12. [Goguen-Meseguer 85]
    J.A.Goguen, J.Meseguer, Order-Sorted Algebra: Partial and Overloaded Operations, Errors and Inheritance, SRI International, Computer Science Lab, to appearGoogle Scholar
  13. [Harper-Honsell-Plotkin 87]
    R.Harper, F.Honsell, G.Plotkin, A Framework for Defining Logics, Proc. LICS87Google Scholar
  14. [Mahr-Makowsky] [Makokai-Reyes 77]
    M.Makkei, G.E.Reyes, First Order Categorical Logic, LNi.Math 611, Springer 1977Google Scholar
  15. [Manca, Salibra,Scollo88]
    V.Manca, A.Salibra, G.Scollo, DELTA: A Deduction System Integrating Equational Logic and Type Assignment, Draft 1988Google Scholar
  16. [Mosses 89]
    P.Mosses, Unified Algebras and modules, In POPL'89, ACM, 1989Google Scholar
  17. [Poigné 84]
    A.Poigné, Another Look at Parameterization Using Algebraic Specifications with Subsorts, Proc. MFCS, LNCS 176, 1984Google Scholar
  18. [Poigné 86]
    A.Poigné, On relating Partiality and Subsorting, Manuscript 1986Google Scholar
  19. [Poigné 88]
    A.Poigné, Partial Algebras, Subsorting, and Dependent Types, Proc. 6th Workshop on Abstract Data Types, Gullane 1987, LNCS 332, 1988, Full Version 1989 (Submitted)Google Scholar
  20. [Scott 77]
    D.S.Scott, Identity and Existence in Intutionistic Logic, In: Applications of Sheaves, Proc. Durham, LNiMath 753, 1979Google Scholar
  21. [Smolka 86]
    G.Smolka, Order-Sorted Horn Logic Semantics and Deduction, SEKI-Rep. SR-86-17, Universität Kaiserslautern 1986Google Scholar
  22. [Smolka&al 88]
    G.Smolka, W.Nutt, J.A.Goguen, J.Meseguer, Order-Sorted Equational Computation, To appear in: H.Ait-Kaci, M.Nivat (eds.) Resolution of Equations in Algebraic Structures, Academic Press 1988Google Scholar
  23. [Smolka 88]
    G. Smolka, Logic Programming with Polymorphically Order-Sorted Types, In: J. Grabowski, P. Lescanne, W. Wechler, Algebraic and Logic Programming, Akademie Verlag, Berlin 1988Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Axel Poigné
    • 1
  1. 1.GMD F2G2, Schloss BirlinghovenSt. Augustin 1

Personalised recommendations