Normed uniformly reflexive structures

  • Henk Barendregt
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 37)


Normal Form Selection Operator Recursive Function Combinatory Logic Peano Arithmetic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Friedman,H. Axiomatic recursive function theory, in: R. Gandy and M. Yates (eds), Logic Colloquium '69, North Holland, Amsterdam (1971), 113–137.Google Scholar
  2. [2]
    Kreissl,G., J. Krivine, Elements of Matnematical Logic, North-Holland, Amsterdam (1967).Google Scholar
  3. [3]
    Moschovakis,Y. Axioms for computation theories — first draft, in: R. Gandy and M. Yates (eds), Logic Colloquium '69, North Holland, Amsterdam (1971), 199–255.Google Scholar
  4. [4]
    Rogers,H. Theory of recursive functions and effective operations, McGrawHill (1967).Google Scholar
  5. [5]
    Rosser, J. A mathematical logic without variables, Ann. of Math. ser.2, 36 (1936), 127–150.Google Scholar
  6. [6]
    Strong,H. Algebraically generalized recursive function theory, IBM J.Research and Development (1968), 465–475.Google Scholar
  7. [7]
    -. Construction of models for algebraically generalized recursive function theory, J.Symbolic Logic 35 (1970), 401–409.Google Scholar
  8. [8]
    Wagner, E.. Uniform reflexive structures: on the nature of Gödelizations and relative computability, Trans.Amer. Math.Soc.144 (1969), 1–41.Google Scholar
  9. [9]
    Troelstra,A, et al. Metamathematical investigation of intuitionistic arithmetic and analysis, Lecture Notes in Mathematics 344, Springer (1973).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1975

Authors and Affiliations

  • Henk Barendregt
    • 1
  1. 1.Mathematisch InstituutBoedapestlaanUtrechtThe Netherlands

Personalised recommendations