Least fixed points revisited

  • J. W. de Bakker
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 37)


Parameter mechanisms for recursive procedures are investigated. Contrary to the view of Manna et al., it is argued that both call-by-value and call-by-name mechanisms yield the least fixed points of the functionals determined by the bodies of the procedures concerned. These functionals differ, however, according to the mechanism chosen. A careful and detailed presentation of this result is given, along the lines of a simple typed lambda calculus, with interpretation rules modelling program execution in such a way that call-by-value determines a change in the environment and call-by-name a textual substitution in the procedure body.

Key words and phrases

Semantics recursion least fixed points parameter mechanisms call-by-value call-by-name lambda calculus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    DE BAKKER, J.W., Recursive Procedures, Mathematical Centre Tracts 24, Mathematisch Centrum, Amsterdam, 1971.Google Scholar
  2. [2]
    DE BAKKER, J.W., Fixed points in programming theory, in: Foundations of Computer Science (J.W. de Bakker, ed.), p.1–49, Mathematical Centre Tracts 63, Mathematisch Centrum, 1975.Google Scholar
  3. [3]
    DE BAKKER, J.W. & W.P. DE ROEVER, A calculus for recursive program schemes, in: Automata, Languages and Programming (M. Nivat, ed.), p.167–196, North-Holland, Amsterdam, 1973.Google Scholar
  4. [4]
    DE BAKKER, J.W. &. L.G.L.T. MEERTENS, On the completeness of the inductive assertion method, to appear in J. of Comp. Syst. Sciences.Google Scholar
  5. [5]
    HINDLEY, J.R., B. LERCHER & J.P. SELDIN, Introduction to Combinatory Logic, Cambridge University Press, Cambridge, 1972.Google Scholar
  6. [6]
    RLEENE, S.C., Introduction to Metamathematics, North-Holland, Amsterdam, 1952.Google Scholar
  7. [7]
    LANDIN, P.J., The mechanical evaluation of expressions, Comp. J, 6 (1964), p.308–320.Google Scholar
  8. [8]
    MANNA, Z., S. NESS & J. VUILLEMIN, Inductive methods for proving properties of programs, CACM, 16 (1973), p.491–502.Google Scholar
  9. [9]
    MANNA, Z. & J. VUILLEMIN, Fixpoint approach to the theory of computation, CACM, 15 (1972), p.528–536.Google Scholar
  10. [10]
    McCARTHY, J., A basis for a mathematical theory of computation, in: Computer Programming and Formal Systems (P. Braffort & D. Hirschberg, eds.), p.33–70, North-Holland, Amsterdam, 1963.Google Scholar
  11. [11]
    MILNER, R., Implementation and applications of Scott's logic for computable functions, in: Proc. of an ACM Conference on Proving Assertions about Programs, p.1–6, ACM, 1972.Google Scholar
  12. [12]
    MORRIS, J.H., Lambda-calculus models of programming languages, Ph.D Thesis, M.I.T., 1968.Google Scholar
  13. [13]
    MORRIS, J.H., Another recursion induction principle, CACM, 14 (1971), p.351–354.Google Scholar
  14. [14]
    NIVAT, M., On the interpretation of recursive program schemes, Report A74/09, Saarland University, Saarbrücken, 1974.Google Scholar
  15. [15]
    PARK, D., Fixpoint induction and proof of program semantics, in: Machine Intelligence, Vol. 5 (B. Meltzer & D. Michie, eds.) p.59–78, Edinburgh University Press, 1970.Google Scholar
  16. [16]
    DE ROEVER, W.P., Recursion and parameter-mechanisms: an axiomatic approach, in: Automata, Languages and Programming (J. Loeckx, ed.), p.34–65, Lecture Notes in Computer Science Vol. 14, Springer-Verlag, Berlin etc., 1974.Google Scholar
  17. [17]
    ROSEN, B.K., Tree-manipulating systems and Church-Rosser theorems, J.ACM, 20 (1973), p.160–187.Google Scholar
  18. [18]
    SCOTT, D., Outline of a mathematical theory of computation, in: Proc. of the Fourth Annual Princeton Conference on Information Sciences and Systems, p.169–176, Princeton, 1970.Google Scholar
  19. [19]
    SCOTT, D. & J.W. DE BAKKER, A theory of programs, unpublished notes, IBM Seminar, Vienna, 1969.Google Scholar
  20. [20]
    SCOTT, D. & C. STRACHEY, Towards a mathematical semantics for computer languages, in: Proc. of the Symposium on Computers and Automata (J. Fox, ed.), p.19–46, Polytechnic Inst. of Brooklyn, 1971.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1975

Authors and Affiliations

  • J. W. de Bakker
    • 1
  1. 1.Mathematical CentreAmsterdamNetherlands

Personalised recommendations