Case-based reasoning and statistics for discovering and forecasting of epidemics

  • M. Bull
  • G. Kundt
  • L. Gierl
Hybrid and Cooperative Systems
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1211)


We describe the methodology of an early warning system which fulfills the following tasks. (1) discovering of health risks, (2) forecasting of the temporal and spatial spread of epidemics and (3) estimating of consequences of an epidemic w.r.t. the personnel load and costs of the public health service. For mastering this three tasks methods from artifical intelligence and statistics are applied.


case-based reasoning statistics forecasting discovery epidemics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aamodt, A.; Plaza, P.: Case-Based Reasoning: Foundational Issues, Methodological Variations, and System Approaches. AI Communications 7(1) 1994, 39–59Google Scholar
  2. 2.
    Bull, M.; Gierl, L.: Architecture of an Early Warning System for Regional Health Risk. Rostocker Informatik Berichte (1996)19, 5–18Google Scholar
  3. 3.
    Fayyad, U. M.; Piatetsky-Shapiro, G.; Smyth, P.; Uthurusamy, R.: Advances in Knowledge Discovery and Data Mining. MIT Press, 1996Google Scholar
  4. 4.
    Jones, E.K.; Roydhouse, A.: Iterative Design of Case Retrieval Systems. Victoria University of Welligton, New Zealand, Technical Report CS-TR-94/6, see also: Proc.of the AAAI-94, Workshop on Case Based Reasoning, Seattle, Washington, 1994Google Scholar
  5. 5.
    Kitano, H.; Shimazu, H.; Shibata, A.: A Methodology for Building Large-Scale Case-Based Systems. in: Proceedings of the AAAI-93, Washington, 1993Google Scholar
  6. 6.
    Lekkas, G.P.; Arouris, N.M.; Viras, L.L.: Case-Based Reasoning in Environmental Monitoring Applications. Applied Artificial Intelligence, Vol. 8, 1994, 349–376Google Scholar
  7. 7.
    Marshall, R.J.: A Review of the Statistical Analysis of Spatial Patterns of Disease. J. R. Statist. Soc. A (1991) 154, Part 3, 421–441Google Scholar
  8. 8.
    Rothman, K.J.: Modern Epidemiology. Little Brown, Boston, Toronto 1986Google Scholar
  9. 9.
    Schmidt, R.; Heindl, B.; Pollwein, B.; Gierl, L.: Abstraction of Data and Time for Prognoses of the Kidney Function in a Case-Based Reasoning System. in J. Brender, J.P. Christensen et al.(eds.): Proc. of Medical Informatics Europe '96, IOS Press, Technology and Informatics, Vol. 34, Part A, 570–574Google Scholar
  10. 10.
    Thomas, R.J.: Geomedical Systems. London, New York 1992Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • M. Bull
    • 1
  • G. Kundt
    • 1
  • L. Gierl
    • 1
  1. 1.Department for Medical Informatics and BiometryUniversity of RostockRostockGermany

Personalised recommendations