Advertisement

If deterministic and nondeterministic space complexities are equal for log log n then they are also equal for log n

  • Andrzej Szepietowski
Contributed Papers Complexity 2
Part of the Lecture Notes in Computer Science book series (LNCS, volume 349)

Abstract

It is well known that for any „well behaved“ space function L(n) ≥ log n if DSPACE(L(n)) = NSPACE(L(n)) then also DSPACE(H(n)) = NSPACE(H(n)) for all „well behaved“ functions H(n) ≥ L(n). The aim of this paper is to show that also if DSPACE(log log n) = NSPACE(log log n) then L = NL (i.e. DSPACE(log n) = NSPACE(log n)).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Freivalds, On the worktime of deterministic and nondeterministic Turing machines (in Russian). Latvijskij Matematiceskij Eshegodnik 23 (1979) 158–165.Google Scholar
  2. 2.
    R. Kannan, Alternation and the power of nondeterminism. 15-th STOC (1983) 344–346.Google Scholar
  3. 3.
    P. M. Lewis II, R. E. Stearns and J. Hartmanis, Memory bounds for the recognition of context-free and context-sensitive languages. IEEE Conf. Rec. on Switching Circuit Theory and Logical Design, NY (1965) 191–202.Google Scholar
  4. 4.
    B. Monien, On the LBA problem. LNCS 117, Fundamentals of Computation Theory, Proc. of 1981 International FCT-Conference, Szeged, Hungary, 1981 Springer Verlag Berlin, Heidelberg, New York 1981, 265–280.Google Scholar
  5. 5.
    W. Narkiewicz, Number Theory (translated by S. Kanemitsu). World Scientific Publishing Co. 1983.Google Scholar
  6. 6.
    W.J. Savitch, Relationships between nondeterministic and deterministic tape complexities. J. of Computer and System Sc., 4 (1970) 177–192.Google Scholar
  7. 7.
    M. Sipser, Halting space-bounded computations. TCS 10 (1980) 335–338.Google Scholar
  8. 7.
    A. Szepietowski, Remarks on languages acceptable in log log n space. IPL 27 (1988) 4, 201–203.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Andrzej Szepietowski
    • 1
  1. 1.Mathematical DepartmentTechnical University of GdańskGdańskPoland

Personalised recommendations