Continuous abstract data types: Basic machinery and results

  • Andrzej Tarlecki
  • Martin Wirsing
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 199)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8 References

  1. [ADJ 76]
    Goguen, J.A., Thatcher, J.W. and Wagner, E.G. An initial algebra approach to the specification, correctness, and implementation of abstract data types. Current Trends in Programming Methodology, Vol. 4: Data Structuring (R.T. Yeh, ed.), Prentice-Hall, pp. 80–149 (1978).Google Scholar
  2. [ADJ 77]
    Goguen, J.A., Thatcher, J.W., Wagner, E.G. and Wright, J.B. Initial algebra semantics and continuous algebras. JACM 24, 1, pp. 68–95.Google Scholar
  3. [ADJ 78]
    Thatcher, J.W., Wagner, E.G. and Wright, J.B. Data type specification: parameterization and the power of specification techniques. TOPLAS 4(4), pp. 711–732 (1982).Google Scholar
  4. [ANR 84]
    Adamek, J., Nelson, E. and Reiterman, J. A Birkhoff variety theorem for continuous algebras. Draft report, February 1984.Google Scholar
  5. [Bau 81]
    Bauer, F.L. et al (the CIP Language Group). Report on a wide spectrum language for program specification and development (tentative version). Report TUM-I8104, Technische Univ. München (to appear in Springer LNCS).Google Scholar
  6. [BeT 84]
    Bergstra, J.A., Tucker, J.V. Top-down design and the algebra of communicating processes, Report CS-R8401, CWI, Amsterdam.Google Scholar
  7. [BL 70]
    Birkhoff, G. and Lipson, D. Heterogeneous algebras. Journal of Combinatorial Theory 8, pp. 115–133.Google Scholar
  8. [BIT 83]
    Blikle, A. and Tarlecki, A. Naive denotational semantics. Proc. IFIP 83 Congress (ed. R.E.A. Mason), North Holland, Amsterdam.Google Scholar
  9. [BrW 80]
    Broy, M. and Wirsing, M. Programming languages as abstract data types, Proc. CAAP'80 (M.Dauchet, ed.), Lille, Université de Lille, pp. 160–177.Google Scholar
  10. [BrW 82]
    Broy, M. and Wirsing, M. Partial abstract types. Acta Informatica 18, pp. 47–64.Google Scholar
  11. [BrW 83]
    Broy, M. and Wirsing, M. Algebraic definition of a functional programming language and its semantic models. R.A.I.R.O. Theoretical Informatics, 17 (1983), pp. 137–161.Google Scholar
  12. [BrW 83a]
    Broy, M. and Wirsing, M. Generalized heterogeneous algebras and partial interpretations. Proc. CAAP'84, Springer LNCS 159, pp. 1–34.Google Scholar
  13. [Bur 82]
    Burmeister, P. Partial algebras — survey of a unifying approach towards a two-valued model theory for partial algebras. Algebra Universalis 15, pp. 306–358.Google Scholar
  14. [BG 82]
    Burstall, R.M., Goguen, J.A. Algebras, theories and freeness: an introduction for computer scientists. Proc. 1981 Marktoberdorf NATO Summer School, Reidel.Google Scholar
  15. [DM 84]
    Dosch, W., Möller, B. Busy and lazy FP with infinite objects. Proc. 1984 ACM Symp. on Functional Programming, Austin, Texas.Google Scholar
  16. [EL 81]
    Ehrich, H.-D. and Lipeck, U. Algebraic domain equations. Theoretical Computer Science 27, pp. 167–196 (1983).Google Scholar
  17. [GGM 76]
    Giarratana, V., Gimona, F. and Montanari, U. Observability concepts in abstract data type specification. Proc. 5th MFCS, Gdansk. Springer LNCS 45.Google Scholar
  18. [GB 83]
    Goguen, J.A. and Burstall, R.M. Introducing institutions. Proc. Logics of Programming Workshop (E.Clarke, ed.), Springer LNCS 164, pp. 221–256.Google Scholar
  19. [GM 82]
    Goguen, J.A. and Meseguer, J. Universal realization, persistent interconnection and implementation of abstract modules. Proc. 9th ICALP, Aarhus, Denmark. Springer LNCS 140, pp. 265–281.Google Scholar
  20. [Gut 75]
    Guttag, J.V. The specification and application to programming of abstract data types. Ph.D. thesis, University of Toronto.Google Scholar
  21. [Kam 83]
    Kamin, S. Final data types and their specification. TOPLAS 5, 1, pp. 97–121.Google Scholar
  22. [LM 82]
    Levy, M.R. and Maibaum, T.S.E. Continuous data types. SIAM J. Computing 11, 2, pp.201–216.Google Scholar
  23. [MM 84]
    Mahr, B. and Makowsky, J.A. Characterizing specification languages which admit initial semantics. Theoretical Computer Science 31(1984), pp.49–60.Google Scholar
  24. [Mes 80]
    Meseguer, J. Varieties of chain-complete algebras. Journal of Pure and Applied Algebra 19(1980), pp. 347–383.Google Scholar
  25. [Mil 77]
    Milner, R. Fully abstract semantics of typed λ-calculi. Theoretical Computer Science 4(1977), pp. 1–22.Google Scholar
  26. [Möl 83]
    Möller, B. An algebraic semantics for busy (data-driven) and lazy (demand-driven) evaluation and its application to a functional language. Proc. ICALP'83 (J.Diaz, ed.), Springer LNCS 154, pp. 513–526.Google Scholar
  27. [Möl 84]
    Möller, B. On the algebraic specification of infinite objects — ordered and continuous models of algebraic types. To appear in Acta Informatica.Google Scholar
  28. [Niv 75]
    Nivat, M. On the interpretation of recursive polyadic program schemes. Instituto Nazionale di Alta Matematica, Symposia Matematica XV. London, Academic Press 1975, pp. 255–281.Google Scholar
  29. [Mos 83]
    Mosses, P.D. Abstract semantic algebras! Proc. IFIP TC2 Working Conf. on Formal Description of Programming Concepts — II, Garmisch-Partenkirchen, North-Holland 1983.Google Scholar
  30. [Mos 84]
    Mosses, P.D. A basic abstract semantic algebra. Proc. Intl. Symp. Semantics of Data Types, Sophia-Antipolis, France, Springer LNCS 173, pp. 87–108.Google Scholar
  31. [Plo 77]
    Plotkin, G.D. LCF considered as a programming language. Theoretical Computer Science 4(1977), pp. 223–255.Google Scholar
  32. [ST 84]
    Sannella, D.T. and Tarlecki, A. Building specifications in an arbitrary institution. Proc. Intl. Symposium on Semantics of Data Types, Sophia-Antipolis, Springer LNCS 173, pp. 337–356.Google Scholar
  33. [ST 85]
    Sannella, D.T. and Tarlecki, A. On observational equivalence and algebraic specification. Proc. CAAP'85 (TAPSOFT), Berlin, Springer LNCS 185, pp. 308–322.Google Scholar
  34. [SW 83]
    Sannella, D.T. and Wirsing, M. A kernel language for algebraic specification and implementation. Proc. Intl. Conf. on Foundations of Computation Theory, Borgholm, Sweden. Springer LNCS 158, pp. 413–427.Google Scholar
  35. [Scott 71]
    Scott, D. The lattice of flow diagrams. Symp. The Semantics of Programming Languages (E.Engeler, ed.), Springer LNM 188, pp. 311–372.Google Scholar
  36. [Scott 76]
    Scott, D. Data types as lattices. SIAM Journal on Computing, 5(1976), pp. 522–587.Google Scholar
  37. [Stoy 77]
    Stoy, J.E. Denotational Semantics: The Scott-Strachey Approach to Programming Language Theory. MIT Press, Cambridge 1977.Google Scholar
  38. [Tar 84]
    Tarlecki, A. On the existence of free models in abstract algebraic institutions. Draft report, Dept. of Computer Science, Univ. of Edinburgh.Google Scholar
  39. [Tar 84a]
    Tarlecki, A. Quasi-varieties in abstract algebraic institutions. Report CSR-173-84, Dept. of Computer Science, Univ. of Edinburgh.Google Scholar
  40. [Wand 79]
    Wand, M. Final algebra semantics and data type extensions. JCSS 19, pp. 27–44.Google Scholar
  41. [WPPDB 83]
    Wirsing, M., Pepper, P., Partsch, H., Dosch, W. and Broy, M. On hierarchies of abstract data types. Acta Informatica 20, pp. 1–33.Google Scholar
  42. [Zil 74]
    Zilles, S.N. Algebraic specification of data types. Computation Structures Group memo 119, Laboratory for Computer Science, MIT.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • Andrzej Tarlecki
    • 1
  • Martin Wirsing
    • 2
  1. 1.Department of Computer ScienceUniversity of EdinburghUK
  2. 2.Fakultät für InformatikUniversität PassauGermany

Personalised recommendations