Tree-partite graphs and the complexity of algorithms

  • D. Seese
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 199)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. /1/.
    J. Barwise (ed.), Handbook of Mathematical Logic, North-Holland, Amsterdam 1977.Google Scholar
  2. /2/.
    B. Bollobás, Extremal Graph Theory, Academic Press, London 1978.Google Scholar
  3. /3/.
    H.D. Ebbinghaus, J. Flum, W. Thomas, Mathematical Logic, Undergraduate Texts in Mathematics, Springer-Verlag, New-York, 1984.Google Scholar
  4. /4/.
    P. van Emde Boas, Dominoes are Forever, preprint 1983.Google Scholar
  5. /5/.
    R. Fagin, Generalized First-Order Spectra and Polynomial-Time Recognizable Sets, in Complexity of Computation, (ed. R. Karp), SIAM — AMS Proc. 7, 1974, pp 27–41.Google Scholar
  6. /6/.
    M.R. Garey, D.S. Johnson, Computers and Intractability, A Guide to the Theory of NP-Completeness, W.H. Freeman and Company, San Francisco 1978.Google Scholar
  7. /7/.
    N. Immerman, Languages Which Capture Complexity Classes, acm-proceedings of the 15 annual acm symp. on the theory of computing, 1983, pp. 347–354.Google Scholar
  8. /8/.
    M.O. Rabin, Decidability of second order theories and automata on infinite trees, Trans. Am. Math. Soc. 141, 1969, 1–35.Google Scholar
  9. /9/.
    N. Robertson and P.D. Seymour, Graph minors I. Excluding a forest, J. Combin. Theory Ser. B 35, 1983, 39–61.Google Scholar
  10. /10/.
    N. Robertson and P.D. Seymour, Graph Minors III. Planar Tree-Width, J. Combin. Theory Ser. B 36, 1984, 49–64.Google Scholar
  11. /11/.
    P. Scheffler, personal communication.Google Scholar
  12. /12/.
    D.G. Seese, Entscheidbarkeits-und Interpretierbarkeitsfragen monadischer Theorien zweiter Stufe gewisser Klassen von Graphen, Dissertation, Humboldt-Universität zu Berlin, 1976.Google Scholar
  13. /13/.
    D.G. Seese, Ein Unentscheidbarkeitskriterium, Wiss. Z. der Humboldt-Univ. zu Berlin Math.-Nat. R. XXIV, 1975,6, 772–780.Google Scholar
  14. /14/.
    D.G. Seese, Some Graph Theoretical Operations and Decidability, Math. Nachr. 87, 1979, 15–21.Google Scholar
  15. /15/.
    K. Takamizawa, T. Nishizeki, N. Saito, Linear-Time Computability of Combinatorial Problems on Series-Parallel Graphs, J. of the Association for Computing Machinery, Vol. 29, No. 3, 1982, 623–641.Google Scholar
  16. /16/.
    C. Thomassen, Infinite Graphs, in Selected Topics in Graph Theory 2, L.W. Beineke and R.J. Wilson (ed.), Acad. press, 1983, London, 129–160.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • D. Seese
    • 1
  1. 1.IMath, AdW der DDRBerlin

Personalised recommendations