Advertisement

Recent results on continuous ordered algebras

  • Evelyn Nelson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 199)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A]
    J. Adamek. Construction of Free Ordered Algebras. Alg.Univ. 14 (1982), pp. 140–166.Google Scholar
  2. [AKNR]
    J. Adamek, V. Koubek, E. Nelson, J. Reiterman. Arbitrarily Large Continuous Algebras on One Generator. T.A.M.S. (to appear).Google Scholar
  3. [AN]
    J. Adamek and E. Nelson. Separately Continuous Algebras. T.C.S. 27(1983), pp. 225–231.Google Scholar
  4. [ANR1]
    J. Adamek, E. Nelson, J. Reiterman. Tree constructions of Free Continuous Algebras. J.C.S.S. 24(1982), pp. 114–146.Google Scholar
  5. [ANR2]
    J. Adamek, E. Nelson, J. Reiterman. The Birkhoff Variety Theorem for Continuous Algebras. Alg.Univ. (to appear).Google Scholar
  6. [ANR3]
    J. Adamek, E. Nelson, J. Reiterman. Continuous Semilattices. manuscript, McMaster University, 1984.Google Scholar
  7. [ADJ1]
    ADJ. (= J.A. Goguen, J.W. Thatcher, E.G. Wagner, J.B. Wright) Some Fundamentals of Order-algebraic Semantics, in "Proceedings MFCS, Gdansk 1976", LNCS 45 pp. 153–168, Springer Verlag, 1976.Google Scholar
  8. [ADJ2]
    ADJ. Initial Algebra Semantics and Continuous Theories, J.A.C.M. 24(1977), pp. 68–95.Google Scholar
  9. [ADJ3]
    ADJ. Free Continuous Theories. IBM Res. Report 6909, Yorktown Heights, 1977.Google Scholar
  10. [ADJ4]
    ADJ. A Uniform Approach to Inductive POSets and Inductive Closure, in M.F.C.S. (J. Gruska, ed.), LNCS 53, Springer-Verlag 1977, also appeared in T.C.S. 7(1978), 57–77.Google Scholar
  11. [B1]
    M. Broy. On the Herbrand-Kleene Universe for Non-deterministic Computations, preprint, Universitat Passau, 1984.Google Scholar
  12. [B2]
    M. Broy. Fixed Point Theory for Communication and Concurrency. In D. Bjorner, ed. IFIP TC2 Working Conference on "Formal Description of Programming Concepts II", North Holland, 1983, pp. 125–147.Google Scholar
  13. [BN]
    B. Banaschewski and E. Nelson. Completions of P.O.Sets. SIAM J. on Comp. 11(1982), 521–528.Google Scholar
  14. [Bi]
    G. Birkhoff. Lattice Theory, A.M.S., New York, 1948.Google Scholar
  15. [CG]
    B. Courcelle and I. Guessarian. On some classes of interpretations. J.C.S.S. 17(1978), 383–413.Google Scholar
  16. [CN1]
    B. Courcelle and M. Nivat. Algebraic Families of Interpretations. 17th IEEE Symp. F.O.C.S. (1976), pp. 137–146.Google Scholar
  17. [CN2]
    B. Courcelle and M. Nivat. The algebraic semantics of recursive program schemes. LNCS 64, pp. 16–30, Springer-Verlag, 1978.Google Scholar
  18. [CS]
    K. Culik and A. Salomaa. On infinite words obtained by iterating morphisms. T.C.S. 19(1982), 29–38.Google Scholar
  19. [GaN]
    O. Garcia and E. Nelson. On the non-existence of free complete distributive lattices. Order (to appear).Google Scholar
  20. [G]
    I. Guessarian. Algebraic Semantics. LNCS 99, Springer, 1981.Google Scholar
  21. [GN]
    I. Guessarian and M. Nivat. About ordered sets in algebraic semantics, Rapport L.I.T.P. 83-19, Paris, 1983.Google Scholar
  22. [HP]
    M.C.B. Hennessy and G.D. Plotkin. Full Abstraction for a Simple Parallel Programming Language. Proc.MFCS 1979, LNCS 74, pp. 109–120.Google Scholar
  23. [M1]
    Jose Meseguer. Varieties of Chain-complete Algebras, J.P.A.A. 19(1980), 347–383.Google Scholar
  24. [M2]
    Jose Meseguer. A Birkhoff-like Theorem for Algebraic Classes of Interpretations of Program Schemes. LNCS 107, pp. 152–168. Springer, 1981.Google Scholar
  25. [M3]
    Jose Meseguer. Ideal Monads and Z-posets. Manuscript, Berkeley 1979.Google Scholar
  26. [Ne]
    Evelyn Nelson. Z-continuous algebras, L.N.M. 871, pp. 315–334, Springer, 1981.Google Scholar
  27. [N]
    M. Nivat. Infinite Words, Infinite Trees, Infinite Computations, in J.W. Bakker and J. van Leeuven, ed. Foundations of Computer Science, Amsterdam, 1979, pp. 3–52.Google Scholar
  28. [P1]
    G. Plotkin. A Powerdomain Construction. Siam J. Comp. 5(1976), 452–487.Google Scholar
  29. [P2]
    G. Plotkin. A Powerdomain for Countable Non-Determinism, in Automata, Languages and Programming, LNCS 140, Springer, 1982, pp. 418–428.Google Scholar
  30. [SS]
    A. Salomaa and M. Soittola. Automata-Theoretic Aspects of Formal Power Series, Springer, 1978.Google Scholar
  31. [S]
    Dana Scott, The lattice of flow diagrams. in "Semantics of Algorithmic Languages", L.N.M. 188, pp. 311–366, Springer-Verlag, 1971.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • Evelyn Nelson
    • 1
  1. 1.Department of Mathematics and StatisticsMcMaster UniversityHamilton

Personalised recommendations