Advertisement

Segmentation of echocardiographic images with Markov random fields

  • I. L. Herlin
  • D. Bereziat
  • G. Giraudon
  • C. Nguyen
  • C. Graffigne
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 801)

Abstract

The aim of this work is to track specific anatomical structures in temporal sequences of echocardiographic images. This paper presents a new spatio-temporal model and describes the relevant spatial and temporal properties that must be taken into consideration to obtain the best possible results. It is expressed within a Markov random field framework and results are presented with different formulations of the temporal properties.

Keywords

Segmentation Markov Random Field Stochastic Process Medical Images Ultrasound 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AG92]
    R. Azencott and C. Graffigne. Non supervised segmentation using multi-level markov random fields. In Proceedings of the 11th International Conference on Pattern Recognition, August 30–September 3 1992.Google Scholar
  2. [Der87]
    R. Deriche. Using Canny's criteria to derive a recursively implemented optimal edge detector. International Journal of Computer Vision, 1 (2), May 1987.Google Scholar
  3. [GG84]
    S. Geman and D. Geman. Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6:712–741, 1984.Google Scholar
  4. [HG93]
    I. L. Herlin and G. Giraudon. Use of temporal information in a segmentation algorithm of ultrasound images. In Proceedings of the conference on Computer Vision and Pattern Recognition, New York, U.S.A., 15–17 June 1993.Google Scholar
  5. [HNG92]
    I. Herlin, C. Nguyen, and C. Graffigne. Stochastic segmentation of ultrasound images. In Proceedings of the 11th International Conference on Pattern Recognition, August 30–September 3 1992.Google Scholar
  6. [Zuc76]
    S.W. Zucker. Region growing: Childhood and adolescence. Computer Graphics and Image Processing, (5):382–399, 1976.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • I. L. Herlin
    • 1
  • D. Bereziat
    • 1
  • G. Giraudon
    • 2
  • C. Nguyen
    • 1
  • C. Graffigne
    • 3
  1. 1.RocquencourtINRIALe Chesnay CedexFrance
  2. 2.INRIA Sophia-AntipolisSophia Antipolis CedexFrance
  3. 3.Laboratoire de MathématiquesUniversité Paris 11 Centre d'OrsayOrsay CedexFrance

Personalised recommendations