Skip to main content

Fractal and chaotic properties of earthquakes

  • Chapter
  • First Online:
Fractal and Chaotic Properties of Earthquakes

Part of the book series: Lecture Notes in Earth Sciences ((LNEARTH,volume 77))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. B. Abraham, A. M. Albano, B. Das, G. de Guzman, S. Yong, R. S. Gioggia, G. P. Puccioni, and J. R. Tredicce. Calculating the dimension of attractors from small data sets. Phys. Lett. A, 114:217+, 1986.

    Google Scholar 

  2. H. D. I. Abarbanel, R. Brown, J. L. Sidorowich, and L. Sh. Tsimring. The analysis of observed chaotic data in physical systems. Rev. Mod. Phys., 65:1331–1392, 1993.

    Google Scholar 

  3. J. Argyris, G. Faust, and M. Haase. An exploration of chaos. North-Holland, Amsterdam, 1994.

    Google Scholar 

  4. K. Aki. A probabilistic synthesis of precursory phenomena. In D. W. Simpson and P. G. Richards, editors, Earthquake Prediction: An International Review, number 4 in Maurice Ewing Ser., pages 566+. AGU, Washington, DC, 1981.

    Google Scholar 

  5. A. A. Anis and E. H. Lloyd. The expected value of the adjusted rescaled hurst range of independant normal summands. Biometrika, 1(63):111+, 1976.

    Google Scholar 

  6. C. A. Aviles, C. H. Scholz, and J. Boatwright. Fractal analysis applied to characteristic segments of the San Andreas Fault. J. Geophys. Res., 92:331+, 1987.

    Google Scholar 

  7. P. Bak. The devil's staircase. Physics Today, pages 38+, 1986.

    Google Scholar 

  8. A. Beghdadi, C. Andraud, J. Lafait, J. Peiro, and M. Perreau. Entropic and multifractal analysis of disordered morphologies. In T. Vicsek, M. Shlesinger, and M. Matsushita, editors, Fractals in Natural Science, pages 360+, Singapore, 1994. World Scientific. This is a full INPROCEDINGS entry.

    Google Scholar 

  9. M. F. Barnsley. Fractals everywhere. Academic Press, San Diego, 1988.

    Google Scholar 

  10. J. Bebién, C. Gagny, and S. S. Tanani. Les associations de magmas acides et basiques: des objects fractals? C. R. Acad. Sci. Paris, 305:277+, 1987.

    Google Scholar 

  11. T. G. Blenkinsop. Cataclasis and processes of particle-size reduction. PAGEOPH, 136:59+, 1991.

    Google Scholar 

  12. S. Borgani, G. Murante, A. Provenzale, and R. Valdarnini. Multifractal analysis of the galaxy distribution: Reliability of results from finite data sets. Phys. Rev. E, 47(6):3879+, 1993.

    Google Scholar 

  13. B. Bodri. A fractal model for regional seismicity at Izu Peninsula, Japan. In Fractals in Natural Sciences: Int. Conference on the Complex Geometry in Nature, page E2, Budapest, 1993. Book of Abstracts, personal communication.

    Google Scholar 

  14. D. C. Boes. Schemes exhibiting hurst behaviour. In J. N. Srivastava, editor, Probability and Statistics. essays in Honour of F. A. Graybill, pages 21+. Elsevier Science Publishers, Amsterdam, 1988.

    Google Scholar 

  15. R. Benzi, G. Paladin, G. Parisi, and A. Vulpiani. On the multifractal nature of fully developed turbulence and chaotic system. J. Phys., 18:3521, 1984.

    Google Scholar 

  16. S. R. Brown and C. H. Scholz. Broad bandwith study of the topography of natural rock surfaces. J. Geophys. Res., 90:12575+, 1985.

    Google Scholar 

  17. C. Beck and F. Schlögel. Thermodynamics of Chaotic Systems. Cambridge Nonlinear Science Series. Cambridge University Press, Cambridge, New York, Melbourne, 1993.

    Google Scholar 

  18. A. Block, W. von Bloh, and H. J. Schellnhuber. Efficient box-counting determination of generalised fractal dimensions. Phys. Rev. A, 42(4):1869+, 1990.

    Google Scholar 

  19. M. Casdagli and S. Eubank. Nonlinear modeling and forecasting. In Proceedings of the NATO/ Santa Fe Institute conference on nonlinear forecasting and modeling, September 1990, volume XI, Reading Mass., 1991. Addison-Wesley.

    Google Scholar 

  20. A. Chhabra and R. V. Jensen. Direct determination of the f(α) singularity spectrum. Phys.Rev.Lett., 69:1327+, 1989.

    Google Scholar 

  21. D. J. Crossley and O. G. Jensen. Fractal velocity models in refraction seismology. PAGEOPH, 131(1–2):61+, 1989.

    Google Scholar 

  22. A. Crisanti, M. H. Jensen, and A. Vulpiani. Strongly intermittent chaos and scaling in an earthquake model. Phys. Rev. E, 46(12):7363+, 1992.

    Google Scholar 

  23. J. M. Carlson, J. S. Langer, and B. E. Shaw. Dynamics of earthquake faults. Reviews of Modern Physics, 66(2):657+, 1994.

    Google Scholar 

  24. M. J. Crozier. Landslides: Causes, consequences and environment. Croom Helm, 1986.

    Google Scholar 

  25. C. Cutler. A review of the theory and estimation of fractal dimensions. In H. Tong, editor, Nonlinear Time series and Chaos, pages 566+. World Scientific, Singapore, 1993.

    Google Scholar 

  26. EERI. The Hyogo-Ken Nanbu Earthquake. Technical report, Earthquake Engineering Research Institute, Oakland, 1995.

    Google Scholar 

  27. J.-P. Eckmann, S. O. Kamphorst, D. Ruelle, and S. Ciliberto. Liapunov exponents from time series. Phys. Rev. A, 34:4971–4979, 1986.

    Google Scholar 

  28. C. J. G. Evertsz and B. B. Mandelbrot. Multifractal measures. In H. O. Peitgen, H. Jürgens, and D. Saupe, editors, Chaos and Fractals, pages 921+. Springer, New York, 1992.

    Google Scholar 

  29. EQE. The January 17, 1995 Kobe Earthquake. Technical report, EQE, San Francisco, 1995. info@eqe.com.

    Google Scholar 

  30. L. M. Emmerson and A. J. Roberts. Fractal and multi-fractal patterns of seaweed settlement. made available through public ftp server ftp.usq.edu.au, April 1994.

    Google Scholar 

  31. J. F. Evernden. Study of regional seismicity and associated problems. Seis. Soc. Am. Bull., 60:393+, 1970.

    Google Scholar 

  32. J. Feder. Fractals. Physics of Solids and Liquids. Plenum Press, New York, London, 1988.

    Google Scholar 

  33. H. Fukuoka, H. Hiura, and C. Goltz. Fractal aspects of the landslide distribution and size-frequency relation of landslides in hokkaido. In Proc. Annual. Conf. of the Japanese Landslide Society, pages 23+, 1994. in Japanese.

    Google Scholar 

  34. M. E. Farrell, A. Passamante, and T. Hediger. Comparing a nearest-neighbor estimator of local attractor dimensions for noisy data to the correlation dimension. Phys. Rev. A, 41(12):6591+, 1990.

    Google Scholar 

  35. R. H. Fluegeman and R. S. Snow. Fractal analysis of long-range paleoclimatic data: Oxygen isotope record of pacific core v28–239. PAGEOPH, 131(1–2):307+, 1989.

    Google Scholar 

  36. U. Frisch, P. Sulem, and M. Nelikin. A simple dynamical model of intermittent fully developed turbulence. J. Fluid. Mech., 87:719+, 1978.

    Google Scholar 

  37. C. Godano and V. Caruso. Multifractal analysis of earthquake catalogues. Geophys. J. Int., 121:385+, 1995.

    Google Scholar 

  38. R. J. Geller. Earthquake prediction: a critical review. Geophys. J. Int., 131:425+, 1997.

    Google Scholar 

  39. M. B. Geilikman, T. V. Golubeva, and V. F. Pisarenko. Multifractal patterns of seismicity. Earth and Planetary Science Letters, 99:127+, 1990.

    Google Scholar 

  40. R. J. Geller, David D. Jackson, Yan Y. Kagan, and Francesco Mulargia. Earthquakes cannot be predicted. Science, 275:1616+, 1997.

    Google Scholar 

  41. G. Gonzato, F. Mulargia, and W. Marzocchi. Practical application of fractal analysis: problems and solutions. Geophys. J. Int., 132:275+, 1998.

    Google Scholar 

  42. J. B. Gómez, Y. Moreno, and A. F. Pacheco. Probabilistic approach to time-dependent load-transfer models of fracture. To appear in Phys. Rev. E, 1998.

    Google Scholar 

  43. C. Goltz. Realisierung einer mittefristigen Echtzeit-Wasserstandsvorhersage für die Deutsche Bucht am Beispiel des Pegels Büsum. Diplomarbeit, Christian-Albrechts-Universität zu Kiel, 1990.

    Google Scholar 

  44. C. Goltz. Multifractal and entropic properties of landslides in Japan. Geolog. Rundsch., 85:71+, 1996.

    Google Scholar 

  45. C. Goltz. Using determinism in earthquake inter-arrival times to look for possible precursory behaviour. In AGU 1997 Fall Meeting, volume 46, page F478, Washington, November 1997. Supplement to Eos, Transactions, AGU.

    Google Scholar 

  46. P. Grassberger and I. Procaccia. Characterization of strange attractors. Phys. Rev. Lett., 20:346+, 1983.

    Google Scholar 

  47. P. Grassberger and I. Procaccia. Dimensions and entropies of strange attractors from a fluctuating dynamics approach. Physica D, 13:34+, 1984.

    Google Scholar 

  48. P. Grassberger. Finite sample corrections to entropy and dimension estimates. Phys. Letts. A, 128:369+, 1988.

    Google Scholar 

  49. P. Grassberger. Efficient large-scale simulations of a uniformly driven system. Phy. Rev. E, 49(4):2436+, 1994.

    Google Scholar 

  50. C. Goltz and W. Welle. Iterative Funktionensysteme: Eine neue Methode in der Computergraphik. Journal der Deutschen Geophysikalischen Gesellschaft, 4:24+, 1988. in German.

    Google Scholar 

  51. H. S. Greenside, A. Wolf, J. Swift, and T. Pignataro. Impracticality of a box-counting algorithm for calculating the dimensionality of strange attrators. Phys. Rev. A, 25:3453+, 1982.

    Google Scholar 

  52. J. Haikun. The multifractal local scaling feature of spatial ‘energy generating’ and its seismic precursory information. In Int. Symp. on Fractals and Dyn. Sys. in Geoscience, volume 1, pages 12+, Frankfurt, April 1993. Book of Abstracts.

    Google Scholar 

  53. F. Hausdorff. Dimension und äusseres Mass. Mathematische Annalen, 79:157+, 1919.

    Google Scholar 

  54. P. Hubert and J. P. Carbonel. Fractal characterization of intertropical precipitations variability and anisotropy. In D. Schertzer and S. Lovejoy, editors, Non-Linear Variability in Geophysics, pages 209+. Kluwer Academic Publishers, Dordrecht, 1991.

    Google Scholar 

  55. J. W. Havstad and C. L. Ehlers. Attractor dimension of non-stationary dynamical sytems from small data sets. Phys. Rev. A, 39:845+, 1989.

    Google Scholar 

  56. T. A. Hewett. Fractal distributions of reservoir heterogeneity and their influence on fluid transport. In 61st Annu. SPE Tech. Conf. Pap. SPE 15386, New Orleans, 1986.

    Google Scholar 

  57. H. Hiura and H. Fukuoka. Fractal distribution characteristics of landsides in hokkaido isl., sikoku isl. and tohoku district. In East Asia Symposium and Field Workshop on Landslides and Debris Flow, pages 35+, 1994.

    Google Scholar 

  58. S.-Z. Hong and S.-M. Hong. An amendment to the fundamental limits on dimension calculations. Fractals, 2(1):123+, 1994.

    Google Scholar 

  59. T. Hirata and M. Imoto. Multifractal analysis of spatial distribution of microeathquakes in the Kanto region. Geophys. J. Int., 107:155+, 1991.

    Google Scholar 

  60. T. Hirata. Omori`s power law aftershock sequences of microfracturing in rock fracture experiment. J. Geophys. Res., 92:6215+, 1987.

    Google Scholar 

  61. T. Hirata. A timeseries of AE events of Andesite under the triaxial compression. In Proc. 7th Japan Symp. on Rock Mech., pages 301+, 1987.

    Google Scholar 

  62. T. Hirata. A correlation between the b value and the fractal dimension of earthquakes. J. Geophys. Res., 94:7507+, 1989.

    Google Scholar 

  63. T. Hirata. Fractal dimension of fault systems in Japan: Fractal structure in rock fracture geometry at various scales. PAGEOPH, 131:157+, 1989.

    Google Scholar 

  64. T. Hirabayashi, K. Ito, and T. Yoshii. Multifractal analysis of earthquakes. PAGEOPH, 138(4):591+, 1992.

    Google Scholar 

  65. T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia, and B. Shraiman. Fractal measures and their singularities: The characterization of strange sets. Phys. Rev. A, 33:1141+, 1986.

    Google Scholar 

  66. T. C. Hanks and H. Kanamori. A moment-magnitude scale. J. Geophys. Res., 84:2348+, 1979.

    Google Scholar 

  67. C. Hooge, S. Lovejoy, D. Schertzer, S. Pecknold, J.-F. Malouin, and F. Schmitt. Multifractal phase transitions: The origin of self-organized criticality in earthquakes. Nonlinear Processes in Geophysics, 1:191+, 1994.

    Google Scholar 

  68. J. Henderson, I. G. Main, R. G. Pearce, and M. Takeya. Seismicity in north-eastern brazil: fractal clustering and the evolution of the b value. Geophys. J. Int., 116:217+, 1994.

    Google Scholar 

  69. C. Hooge. Earthquakes as a space-time multifractal process. MSc thesis, McGill University, 1993.

    Google Scholar 

  70. H. G. E. Hentschel and I. Procaccia. The infite number of generalized dimensions of fractals and strange attractors. Physica D, 8:435+, 1983.

    Google Scholar 

  71. H. M. Hastings and G. Sugihara. Fractals-A Users's Guide for the Natural Sciences. Oxford University Press, Oxford, 1993.

    Google Scholar 

  72. T. Hirata, T. Satoh, and K. Ito. Fractal structure of spatial distribution of microfracturing in rock. Geophys. J. Roy. Astr. Soc., 90:369+, 1987.

    Google Scholar 

  73. K. J. Hsü. Fractal geometry of global change in earth history. In 29th International Geological Congress, volume 1, page 10, Tsukuba, August 1992. Book of Abstracts.

    Google Scholar 

  74. J. Huang and D. L. Turcotte. Are earthquakes an example of deterministic chaos? Geophys. Res. Lett., 17:223+, 1990.

    Google Scholar 

  75. J. Huang and D. L. Turcotte. Chaotic seismic faulting with a mass-spring model and velocity-weakening friction. Pure Appl. Geophys., 138:569+, 1992.

    Google Scholar 

  76. H. E. Hurst. Long-term storage capacity of reservoirs. Trans. Am. Soc. Civil Eng., 116:770+, 1951.

    Google Scholar 

  77. H. E. Hurst. Methods of using long-term storage in reservoirs. Proc. Inst. Civil Eng., 5(Part 1):519+, 1956.

    Google Scholar 

  78. K. Ito. Towards a new view of earthquake phenomena. Pageoph, 138:531+, 1992.

    Google Scholar 

  79. G. Igarashi and H. Wakita. Groundwater radon anomalies associated with earthquakes. Tectonophysics, 180:237+, 1990.

    Google Scholar 

  80. H. Kanamori and D. L. Anderson. Theoretical basis of some empirical relations in seismology. Seis. Soc. Am. Bull, 65:1073+, 1975.

    Google Scholar 

  81. Y. Y. Kagan. Seismicity: Turbulence of solids. Non-Linear Science Today, 2:8+, 1992.

    Google Scholar 

  82. Y. Y. Kagan. Statistics of characteristic earthquakes. Bull. Seis. Soc. Am., 83:22+, 1993.

    Google Scholar 

  83. H. Kanamori. Quantification of earthquakes. Nature, 271:411+, 1978.

    Google Scholar 

  84. H. Katao. personal communication, October 1995. Dr. Katao's e-mail address is katao@epdpri1.dpri.kyoto-u.ac.jp.

    Google Scholar 

  85. D. Kaplan and L. Glass. Understanding nonlinear dynamics. Springer Verlag, New York, 1995.

    Google Scholar 

  86. M. B. Kennel and S. Isabelle. Method to distinguish chaos from colored noise and to determine embedding parameters. Phys. Rev. A, 46(6):3111+, 1992.

    Google Scholar 

  87. G. King. The accomodation of large strains in the upper lithosphere of the earth and other solids by self-similar fault systems: The geometrical origin of the b-value. PAGEOPH, 121:761+, 1983.

    Google Scholar 

  88. Y. Y. Kagan and L. Knopoff. Statistical study of the occurence of shallow earthquakes. Geophys. J. Roy. Astr. Soc., 55:55+, 1978.

    Google Scholar 

  89. Y. Y. Kagan and L. Knopoff. Spatial distribution of earthquakes: the two-point correlation function. Geophys. J. Roy. Astr. Soc., 62:303+, 1980.

    Google Scholar 

  90. V. Klemens. The hurst phenomenon: A puzzle? Water Resour. Res., 10(4):675+, 1974.

    Google Scholar 

  91. L. Knopoff. Earth tides as a triggering mechanism for earthquakes. Seism. Soc. Am. Bull., 54:1865+, 1964.

    Google Scholar 

  92. A. N. Kolmogorov. Entropy per unit time as a metric invariant of automorphisms. Dokl. Akad. Nauk. SSSR, 124:754+, 1959. (English translation in Math. Review., 21, 2035+).

    Google Scholar 

  93. S. Komatsu. Japan Sinks. Kodansha, Tokyo, 1995.

    Google Scholar 

  94. G. Korvin. Fractal Models in the Earth Sciences. Elsevier, Amsterdam, 1992.

    Google Scholar 

  95. L. Kaufman and P. J. Rousseeuw. Finding groups in data: an introduction to cluster analyusis. John Wiley & Sons, New York, 1990.

    Google Scholar 

  96. Th.-M. Kruel. Scount: A program to calculate the correlation and information dimension from attractors by the method of “sphere-counting”. public ftp-server ftp.phys-chemie.uni-wuerzburg.de, October 1991. Obtained with other programs and documentation for nonlinear analysis.

    Google Scholar 

  97. T.-M. Kruel. Zeitreihenanalyse nichtlinearer Systeme: Chaos und Rauschen. PhD dissertation, Bayerische Julius-Maximilian-Universität Würzburg, Würzburg, 1992. (in German).

    Google Scholar 

  98. H.-J. Kümpel. Hydrologic and geochemical precursors: Implications for crustal models. In Proceed. Int. Conf. on Earthquake Prediction—State of the Art, pages 249+, Strasbourg, October 1991.

    Google Scholar 

  99. K. Lehnertz and C. E. Elger. Can epileptic seizures be predicted? Evidence from nonlinear time series analysis of brain electrical activity. Phys. Rev. Lett., 80(22):5019+, 1998.

    Google Scholar 

  100. C. Lomnitz. Fundamentals of Earthquake Prediction. John Wiley & Sons, New York, 1994.

    Google Scholar 

  101. E. N. Lorenz. Deterministic nonperiodic flow. J. Atmos. Sci., 20:130+, 1963.

    Google Scholar 

  102. S. Liebovitch and T. Toth. A fast algorithm to determine fractal dimensions by box counting. Phys. Lett. A, 141:386+, 1989.

    Google Scholar 

  103. Ian Main. Statistical physics, seismogenesis and seismic hazard. Reviews of Geophysics, 4(34):433+, 1996.

    Google Scholar 

  104. B. B. Mandelbrot. Une classe de processes stochastique homothetique a soi; application a la loi climatologique de h. e. hurst. Comptes Rendus Acad. Sci. Paris, 260:3274+, 1965.

    Google Scholar 

  105. B. B. Mandelbrot. Fractals: Form, Chance and Dimension. W. H. Freeman and Company, New York, 1977.

    Google Scholar 

  106. B. B. Mandelbrot. The Fractal Geometry of Nature. W. H. Freeman and Company, New York, 1983. Updated and Augmented Edition.

    Google Scholar 

  107. J. L. McCauley. Chaos, Dynamics and Fractals — an algorithmic approach to deterministic chaos. Cambridge Nonlinear Science Series. Cambridge University Press, Cambridge, New York, Melbourne, 1994. First paperback edition with corrections.

    Google Scholar 

  108. R. Meissner. Non-linear processes in earthquake prediction research, a review. In J. H. Kruhl, editor, Fractals and Dynamic Systems in Geosciences, pages 159+. Springer Verlag, Heidelberg, 1994.

    Google Scholar 

  109. S. Miyamoto. Fuzzy sets in information retrieval and cluster analysis. Kluwer Academic Publishers, Dordrecht, 1990.

    Google Scholar 

  110. B. B. Mandelbrot and K. McCamy. On the secular pole motion and the chandler wobble. Geophys. J. R. Astr. Soc., 42(21):217+, 1970.

    Google Scholar 

  111. B. B. Mandelbrot and J. W. Van Ness. Fractional brownian motions, fractional noises and applications. SIAM Rev., 10(4):422+, 1968.

    Google Scholar 

  112. F. C. Moon. Chaotic and Fractal Dynamics. Plenum Press, New York, London, 1992.

    Google Scholar 

  113. C. Meneveau and K. R. Sreenivasan. The multifractal spectrum of the dissipation field in turbulent flow. In M. D. Van and B. Nicolis, editors, Physics of Chaos and Far From Equilibrium. North-Holland, Amsterdam, 1987.

    Google Scholar 

  114. M. Matsuzaki and H. Takayasu. Fractal features of the earthquake phenomenon and a simple mechanical model. J. Geophys. Res., 96(B12):19925+, 1991.

    Google Scholar 

  115. B. B. Mandelbrot and J. R. Wallis. Noah, Joseph, and the operational hydrology. Water Resour. Res., 4(5):909+, 1968.

    Google Scholar 

  116. B. B. Mandelbrot and J. R. Wallis. Some long-run properties of geophysical records. Water Resour. Res., 5(2):321+, 1969.

    Google Scholar 

  117. H. Nakanishi. Cellular-automaton model of earthquakes with deterministic dynamics. Phys. Rev. A, 41(12):7086+, 1990.

    Google Scholar 

  118. M. Noguchi and H. Wakita. A method for continuous measurement of radon in groundwater for earthquake prediction. J. Geophys. Res., 82:1353+, 1977.

    Google Scholar 

  119. P. G. Okubo and K. Aki. Fractal geometry in the San Andreas Fault System. J. Geophys. Res., 92:345+, 1987.

    Google Scholar 

  120. Y. Ogata and K. Abe. Some statistical features of the long-term variation of the global and regional seismicity. Int. Stat. Review, 59:139+, 1991.

    Google Scholar 

  121. Z. Olami, H. J. S. Feder, and K. Christensen. Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes. Phys. Rev. Lett., 68(8):1244+, 1992.

    Google Scholar 

  122. Y. Ogata. Statistical models for earthquake occurrences and residual analysis for point processes. J. Am. Stat. Assoc., 83:401+, 1988.

    Google Scholar 

  123. E. Ott, C. Grebogi, and J. A. Yorke. Theory of first order phase transitions for chaotic attractors of nonlinear dynamical systems. Phys. Lett. A, 135:334+, 1989.

    Google Scholar 

  124. S. Ouchi and M. Matsushita. Measurement of self-affinity on surfaces as a trial application of fractal geometry to landform analysis. Geomorphology, 5:115+, 1992.

    Google Scholar 

  125. E. Ott. Chaos in Dynamical Systems. Cambridge University Press, New York, 1993.

    Google Scholar 

  126. T. Ouchi and T. Uekawa. Statistical analysis of the spatial distribution of earthquakes — variation of the spatial distribution of earthquakes before and after large earthquakes. Phys. Earth Planet Int., 44:211+, 1986.

    Google Scholar 

  127. W. H. Press et al. Numerical Recipes in C. Cambridge University Press, Cambridge, 1992. Second Edition.

    Google Scholar 

  128. A. W. Pettis, T. A. Bailey, A. K. Jain, and R. C. Dubes. An intrinsic dimensionality estimator from near-neighbor information. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAM-1(1):25+, 1979.

    Google Scholar 

  129. P. Puster and T. H. Jordan. Stochastic analysis of mantle convection experiments using two-point correlation functions. Geophys. Res. Lett., 21(4):305+, 1994.

    Google Scholar 

  130. K. Pawelzik and H. G. Schuster. Generalized dimensions and entropies from a measured time series. Phys. Rev. A, 35:481, 1987.

    Google Scholar 

  131. H.-O. Peitgen and D. Saupe, editors. The Science of Fractal Images. Springer, Heidelberg, 1988.

    Google Scholar 

  132. A. Provenzale, B. Villone, A. Babiano, and R. Vio. Intermittency, phase randomization and generalized fractal dimensions. Journal of Bifurcation and Chaos, 3:729+, 1993.

    Google Scholar 

  133. C. F. Richter. Elementary Seismology. Freeman and Co., San Francisco, 1958.

    Google Scholar 

  134. J. B. Rundle, W. Klein, and S. Gross. Dynamics of a traveling density wave model for earthquakes. Phys. Rev. Lett., 76:4285+, 1996.

    Google Scholar 

  135. D. A. Roberts. Is there a strange attractor in the magnetosphere. J. Geophys. Res. A, 96(9):16031+, 1991.

    Google Scholar 

  136. P. A. Rydelek, I. Selwyn-Sacks, and R. Scarpa. On tidal triggering of earthquakes at Campi Flegrei, Italy. Geophys. J. Int., 109:125+, 1993.

    Google Scholar 

  137. J. C. Russ. Surface characterization: Fractal dimensions, hurst coefficients and frequency transforms. Journal of Computer Assisted Microscopy, 2(3):161+, 1990.

    Google Scholar 

  138. J. C. Russ. Fractal Surfaces. Plenum Press, New York, 1994.

    Google Scholar 

  139. J. B. Ramsey and H. J. Yuan. The statistical properties of dimension calculations using small data sets. Nonlinearity, 3:155+, 1990.

    Google Scholar 

  140. M. A. Sadovskiy et al. Characteristic dimensions of rock and hierarchical properties of seismicity. Izvestiya Acad. Sci. USSR, Phys. Solid Earth, 20:87+, 1984.

    Google Scholar 

  141. C. H. Scholz and C. A. Aviles. The fractal geometry of faults and faulting. In S. Das, J. Boatwright, and C. H. Scholz, editors, Earthquake Source Mechanics, number 6 in Maurice Ewing Ser., pages 147+. AGU, 1986.

    Google Scholar 

  142. M. Suzuki, T. Asakawa, and S. Kobayashi. Examination of critical rainfall for landslides with rain fall radar information — the case of typhoon no. 10, 1983 attack on hyogo and kyoto. In Proceed. Ann. Conf. of Erosion Control Society, pages 81+, 1988. in Japanese.

    Google Scholar 

  143. J. J. Sarraille. Developing algorithms for measuring fractal dimensions. public ftp-server csustan.csustan.edu, June 1992. Obtained with other documentation of program FD3.

    Google Scholar 

  144. J. J. Sarraille. personal communication, October 1993. Prof. Sarraille's e-mail address is john-s©u-aizu.ac.jp.

    Google Scholar 

  145. H. Sato. Fractal interpretation of the linear relation between logarithms of maximum amplitude and hypocentral distance. Geophys. Res. Let., 15:373+, 1988.

    Google Scholar 

  146. C. G. Sammis and R. L. Biegel. Fractals, fault-gouge and friction. PA-GEOPH, 131:255+, 1989.

    Google Scholar 

  147. C. H. Scholz. Microfractures, aftershocks and seismicity. Bull. seism. Soc. Am., 58:1117+, 1968.

    Google Scholar 

  148. H. G. Schuster. Deterministic chaos: An introduction. VCH, Weinheim, 1988.

    Google Scholar 

  149. C. H. Scholz. Global perspectives of chaos. Nature, 338:459+, 1989.

    Google Scholar 

  150. B. E. Shaw, J. M. Carlson, and J. S. Langer. Patterns of activity preceeding large earthquakes. J. Geophys. Research., 97:479+, 1992.

    Google Scholar 

  151. E. Segre and C. Deangeli. Cellular automaton for realistic modelling of landslides. Nonlinear Proc. Geophys., 2:1+, 1995.

    Google Scholar 

  152. R. Shaw. Strange attractors, chaotic behaviour and information flow. Z. Naturforsch. A, 36:80+, 1981.

    Google Scholar 

  153. D. Schertzer and S. Lovejoy. Nonlinear variability in geophysics: Scaling and multifractal processes. Lecture Notes, 1993. AGU Chapman/EGS Richardson Memorial Conference.

    Google Scholar 

  154. R. Stoop and P. F. Meier. Evaluation of lyapunov exponents and scaling functions from time series. J. Opt. Soc. Am. B, 5:1037–1045, 1988.

    Google Scholar 

  155. L. A. Smith. Intrinsic limits on dimension calculations. Phys. Lett. A., 133:283+, 1988s.

    Google Scholar 

  156. S. Sadovskii and V. F. Pisarenko. Prediction of time series. In Y. A. Kravtsov, editor, Limits of predictability, pages 161+. Springer Verlag, Berlin, 1993. Springer series in synergetics.

    Google Scholar 

  157. C. Sparrow. The Lorenz equations: Bifurcations, chaos, and strange attractors. Springer, 1982.

    Google Scholar 

  158. J. C. Sprott. personal communication, October 1993. Prof. Sprott's e-mail address is sprott©juno.physics.wisc.edu.

    Google Scholar 

  159. J. C. Sprott and G. Rowlands. Chaos Data Analyzer: The professional version. American Institute of Physics, New York, 1995. Part of the series Physics Academic Software, Editor J. S. Risley, Prerelease Version.

    Google Scholar 

  160. A. S. Sharma, D. Vassiliadis, and K. Papadopoulos. Reconstruction of low-dimensional magnetospheric dynamics by singular spectrum analysis. Geophys. Res. Let., 20(5):335+, 1993.

    Google Scholar 

  161. F. Takens. Detecting strange attractors in turbulence. In Rand D. A. and Young L.-S., editors, Dynamical Systems and Turbulence (Warwick 1980) (Lecture Notes in Mathematics), volume 898, pages 366+. Springer, Berlin, 1980.

    Google Scholar 

  162. H. Takayasu. Fractals in the Physical Sciences. Nonlinear Science: Theory and Applications. Manchester University Press, Manchester, New York, 1990.

    Google Scholar 

  163. T. Takahashi. Debris Flow. Belkema, 1991.

    Google Scholar 

  164. J. Theiler and S. Eubank. Don't bleach chaotic data. Chaos, 3:771+, 1993.

    Google Scholar 

  165. J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J. D. Farmer. Testing for nonlinearity in time series: the method of surrogate data. Physica D, 58:77+, 1992.

    Google Scholar 

  166. J. Theiler. Efficient algorithm for estimating the correlation dimension from a set of discrete points. Phys. Rev. A, 36:4456+, 1987.

    Google Scholar 

  167. J. Theiler. Some comments on the correlation dimension of 1/f-alpha noise. Phys. Lett. A., 155:480+, 1991.

    Google Scholar 

  168. A. A. Tsonis. Chaos: From theory to applications. Plenum, New York, 1992.

    Google Scholar 

  169. D. L. Turcotte. Fractals and Chaos in Geology and Geophysics. Cambridge University Press, Cambridge, 1992.

    Google Scholar 

  170. D. L. Turcotte. Fractals and Chaos in Geology and Geophysics. Cambridge University Press, Cambridge, 1997. Second Edition.

    Google Scholar 

  171. W. van de Water and P. Schram. Generalized dimensions from near-neighbor information. Phys. Rev. A, 37(8):3118+, 1988.

    Google Scholar 

  172. T. Vicsek. Fractal Growth Phenomena, 2nd ed. World Scientific Publishing Co., Singapore, 1992.

    Google Scholar 

  173. R. F. Voss. Fractals in nature: From characterization to simulation. In H.-O. Peitgen and O. Saupe, editors, The Science of Fractal Images, pages 21+. Springer Verlag, Heidelberg, 1988.

    Google Scholar 

  174. H. Wakita. Changes in groundwater level and chemical composition. In T. Asada, editor, Earthquake Prediction Techniques, pages 175+. University of Tokyo Press, Tokyo, 1982.

    Google Scholar 

  175. K. Watanabe. Strain variations of the Yamasaki fault zone, Southwest Japan, derived from extensometer observations. Bull. of the Dis. Prev. Res. Inst. Kyoto Univ., 41(355):53+, 1991. Part 1: On the long-term strain variations....

    Google Scholar 

  176. K. Watanabe. Strain variations of the Yamasaki fault zone, Southwest Japan, derived from extensometer observations. Bull. of the Dis. Prev. Res. Inst. Kyoto Univ., 41(354):29+, 1991. Part 2: On the short-term strain variations derived from strain steps....

    Google Scholar 

  177. R. Wayland, D. Bromley, D. Pickett, and A. Passamante. Recognizing determinism in a time series. Phys. Rev. Lett., 70:500+, 1993.

    Google Scholar 

  178. H. Wakita, G. Igarashi, and K. Notsu. An anomalous radon decrease in groundwater prior to an m6.0 earthquake: a possible precursor? Geophys. Res. Lett., 18(4):629+, 1991.

    Google Scholar 

  179. H. Wakita, Y. Nakamura, and Y. Sano. Short-term and intermediate-term geochemical precursors. PAGEOPH, 126:267+, 1988.

    Google Scholar 

  180. C. Watts, D. E. Newman, and J. C. Sprott. Chaos in reversed-field-pinch plasma simulation and experiment. Physical Review E, 49(3):2291+, 1994.

    Google Scholar 

  181. A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano. Determining lyapunov exponents from a time series. Physica D, 16:285–317, 1985.

    Google Scholar 

  182. M. Wyss. Cannot earthquakes be predicted? Science, 278:487+, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Christian Goltz

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag

About this chapter

Cite this chapter

Goltz, C. (1997). Fractal and chaotic properties of earthquakes. In: Goltz, C. (eds) Fractal and Chaotic Properties of Earthquakes. Lecture Notes in Earth Sciences, vol 77. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0028316

Download citation

  • DOI: https://doi.org/10.1007/BFb0028316

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64893-2

  • Online ISBN: 978-3-540-68459-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics