Advertisement

A fast derandomization scheme and its applications

  • Yijie Han
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 519)

Abstract

We present a fast derandomization scheme for the PROFIT/COST problem. Through the application of this scheme we show the time complexity O(log2n log log n) for the Δ+1 vertex coloring problem using O ((m+n)/log log n) processors on the CREW PRAM. The power of this fast derandomization scheme also allows us to obtain fast and efficient parallel algorithms for the maximal independent set problem and the maximal matching problem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [ABI]
    N. Alon, L. Babai, A. Itai. A fast and simple randomized parallel algorithm for the maximal independent set problem. J. of Algorithms 7, 567–583(1986).Google Scholar
  2. [BR]
    B. Berger, J. Rompel. Simulating (logc n)-wise independence in NC. Proc. 1989 IEEE FOCS, 2–7.Google Scholar
  3. [BRS]
    B. Berger, J. Rompel, P. Shor. Efficient NC algorithms for set cover with applications to learning and geometry. Proc. 1989 IEEE FOCS, 54–59.Google Scholar
  4. [GS]
    M. Goldberg, T. Spencer. Constructing a maximal independent set in parallel. SIAM J. Dis. Math., Vol 2, No. 3, 322–328(Aug. 1989).Google Scholar
  5. [H1]
    Y. Han. A parallel algorithm for the PROFIT/COST problem. To appear in Proc. of 1991 Int. Conf. on Parallel Processing, (AUg. 1991).Google Scholar
  6. [H2]
    Y. Han. A fast derandomization scheme and its applications. Tech. Report, TR No. 180–90, Computer Science Dept., University of Kentucky, Lexington, Kentucky.Google Scholar
  7. [HI]
    Y. Han and Y. Igarashi. Derandomization by exploiting redundancy and mutual independence. Proc. SIGAL 1990, LNCS 450, 328–337.Google Scholar
  8. [IS]
    A. Israeli, Y. Shiloach. An improved parallel algorithm for maximal matching. Information Processing Letters 22(1986), 57–60.Google Scholar
  9. [KW]
    R. Karp, A. Wigderson. A fast parallel algorithm for the maximal independent set problem. JACM 32:4, Oct. 1985, 762–773.Google Scholar
  10. [L1]
    M. Luby. A simple parallel algorithm for the maximal independent set problem. SIAM J. Comput. 15:4, Nov. 1986, 1036–1053.Google Scholar
  11. [L2]
    M. Luby. Removing randomness in parallel computation without a processor penalty. Proc. 1988 IEEE FOCS, 162–173.Google Scholar
  12. [L3]
    M. Luby. Removing randomness in parallel computation without a processor penalty. TR-89-044, Int. Comp. Sci. Institute, Berkeley, California.Google Scholar
  13. [MR]
    G. L. Miller and J. H. Reif. Parallel tree contraction and its application. Proc. 26th Symp. on Foundations of Computer Science, IEEE, 291–298(1985).Google Scholar
  14. [MNN]
    R. Motwani, J. Naor, M. Naor. The probabilistic method yields deterministic parallel algorithms. Proc. 1989 IEEE FOCS, 8–13.Google Scholar
  15. [PSZ]
    G. Pantziou, P. Spirakis, C. Zaroliagis. Fast parallel approximations of the maximum weighted cut problem through Derandomization. FST&TCS 9: 1989, Bangalore, India, LNCS 405, 20–29.Google Scholar
  16. [Rag]
    P. Raghavan. Probabilistic construction of deterministic algorithms: approximating packing integer programs. JCSS 37:4, Oct. 1988, 130–143.Google Scholar
  17. [Sp]
    J. Spencer. Ten Lectures on the Probabilistic Method. SIAM, Philadelphia, 1987.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Yijie Han
    • 1
  1. 1.Department of Computer ScienceUniversity of KentuckyLexington

Personalised recommendations