A resolution method for a non monotonic multimodal logic

  • Christophe Mathieu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 747)


In this paper we present a resolution method for a non monotonic multimodal logic: Hypothesis Theory. As we define a resolution method, we need modal formula to be in clausal normal form. But an important problem with modal logic is that there is no such simple normal form than in classical logic. So we propose an original clausal transformation for modal formulas. This translation avoids the exponential increase in size which may occur with another translation. Moreover, modal formulas and their translation entails the same formulas. This technique should increase the attractiveness of modal resolution based theorem provers for automated reasoning.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Fariñas Del Cerro, A. Herzig: Modal Deduction with Applications in Epistemic and Temporal Logics. 5th draft, to appear in: Handbook of Logic in Artificial Intelligence edited by Dov Gabbay and Chris Hogger, Oxford University Press (1991)Google Scholar
  2. 2.
    Léa Sombé (Besnard P., Cordier M-O., Dubois D., Farinas del Cerro L., Froidevaux C., Moinard Y., Prade H., Schwind C., Siegel P.): Reasoning under Incomplete Information in Artificial Intelligence, John Wiley (1990)Google Scholar
  3. 3.
    C. Mathieu: Une procédure de preuve pour une logique modale non monotone, Thèse de doctorat informatique de l'université de Provence, Marseille, (1993)Google Scholar
  4. 4.
    R. Moore: Autoepistemic Logic, Non-Standard Logics for Automated Reasoning (P. Smets, A. Mandani, D. Dubois, H. Prade Eds.) Academic Press, London, pp 105–136, (1988)Google Scholar
  5. 5.
    D. A. Plaisted and S. Greenbaum: A Structure-Preserving Clause Form Translation, Journal of Symbolic Computation, 2, pp 293–304, (1986)Google Scholar
  6. 6.
    R. Reiter: A Logic for Default Reasoning, Artificial intelligence 13, pp 81–132, (1980)Google Scholar
  7. 7.
    J. A. Robinson: A Machine Oriented Logic Based on the Resolution Principle, JACM, Vol 12 n∘1, pp 23–41, (1965)Google Scholar
  8. 8.
    C. Schwind and P. Siegel: Hypothesis Theory for Nonmonotonic Reasoning, Workshop on Non Standard Queries and Answers, Toulouse, (1991)Google Scholar
  9. 9.
    P. Siegel: Représentation et utilisation de la connaissance en calcul propositionnel, Thèse de Doctorat d'état en Informatique, Université d'Aix-Marseille II, (1987)Google Scholar
  10. 10.
    P. Siegel: A Modal Logic for Nonmonotonic Reasoning, Workshop DRUMS, Marseille, (1990)Google Scholar
  11. 11.
    G.S. Tseitin: On the Complexity of Derivations in Propositionnal Calculus, Studies In Constructive Mathematics And Mathematical Logic Part II, (1968) and Automation Of Reasoning 2: Classical Papers On Computational Logic pp 466–483 Siekmann Wrightson eds (1983)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Christophe Mathieu
    • 1
  1. 1.L.I.U.P. Université de Provence CASE AMarseille Cedex 3

Personalised recommendations