Interference logic = conditional logic + frame axiom

  • L. Fariñas del Cerro
  • A. Herzig
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 747)


We investigate the notion of interference between formulas as a basis for change operations. Such a notion permits us to enrich conditional logics with a frame axiom. This new logic allows us to solve in a natural way some of the problems appearing in the model based approach to change.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alchourrón et al. 85
    C. E. Alchourron, P. Gärdenfors and D. Makinson. On the Logic of Theory Change: Partial Meet Contractions and Revision Functions. J. Symb. Logic 50.2. pp 510–530, 1985.Google Scholar
  2. Chellas 75.
    B.F. Chellas. Basic conditional logic. J. of Philos. Logic, 4, 1975, pp 133–53.Google Scholar
  3. Demolombe Jones 1992.
    Demolombe Jones 1992 A logic for reasoning about “is about”.Report, ONERA-CERT, Toulouse, 1992.Google Scholar
  4. Eiter Gottlob 92.
    Th. Eiter, G. Gottlob, On the complexity of propositional knowledge base revision, updates, and counterfactuals. Journal of AI 57 (1992), pp. 227–270.Google Scholar
  5. Epstein 90.
    R. Epstein, The semantics of Logic. Vol. 1: Propositional logics. Kluwer Academic Publishers, 1990.Google Scholar
  6. Fariñas et al. 93
    L. Fariñas del Cerro, A. Herzig, J. Lang. Ordering-based nonmonotonic reasoning. Journal of AI., to appear.Google Scholar
  7. Fariñas Herzig 93.
    L. Fariñas del Cerro, A. Herzig. Revisions, updates and interference. In: Logic, Acion and Information, eds. A. Fuhrmann, H. Rott, DeGruyter (Berlin-New York). to appear in 1993.Google Scholar
  8. Fariñas Lugardon 93.
    L. Fariñas del Cerro, V. Lugardon. Sequents for Dependence Logics. Logique et Analyse, to appear.Google Scholar
  9. Fine 73.
    T. Fine, Theories of probability. Academic Press, 1973.Google Scholar
  10. Gärdenfors 88.
    P. Gärdenfors. Knowlege in Flux. MIT Press, 1988.Google Scholar
  11. Gärdenfors 78.
    P. Gärdenfors, On the Logic of Relevance. Synthese 37, 1978, pp 351–367.Google Scholar
  12. Grahne 91.
    G. Grahne. Updates and Contrafactuals. Principles of Knowlege Representation and Reasoning. Morgan and Kaufmann, 1991.Google Scholar
  13. Katsuno Mendelzon 91.
    H. Katsuno and A. O. Mendelzon. Propositional knowledge base revision and minimal change. J. of AI 52, 263–294, 1991.Google Scholar
  14. Kolmogorov 56.
    A. Kolmogorov, Foundations of the Theory of Probability. Bronx, New York:Chelsea, 1956.Google Scholar
  15. Léa Sombé 92.
    Léa Sombé, Révision de bases de connaissances. Actes des 4èmes Journées Nationales du PRC IA, Marseille, Oct. 1992. Teknea, Toulouse, 1992.Google Scholar
  16. Lewis 73.
    D. K. Lewis. Counterfactuals. Blackwell, Oxford, 1973.Google Scholar
  17. Lifschitz 87.
    V. Lifschitz, Formal Theories of Action. The Frame Problem in Artificial Intelligence: Proc. of the 1987 Workshop, Morgan Kaufmann, 1987Google Scholar
  18. Winslett 90.
    M. Winslett. Updating Logical Databases. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press 1990.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • L. Fariñas del Cerro
    • 1
  • A. Herzig
    • 1
  1. 1.Applied Logic Group, I.R.I.T.Université Paul SabatierToulouse CedexFrance

Personalised recommendations