Advertisement

The combinatorial neural network: A connectionist model for knowledge based systems

  • Ricardo José Machado
  • Armando Freitas Da Rocha
10. Neural Networks
Part of the Lecture Notes in Computer Science book series (LNCS, volume 521)

Abstract

This paper describes the Combinatorial Neural Model, a high order neural network suitable for classification tasks. The model is based on the fuzzy sets theory, neural sciences and expert knowledge analysis results. The model presents interesting properties such as: modularity, explanation capacity, concomitant knowledge and data representation, high speed of training, incremental learning, generalization capacity, feature selection, processing of uncertain and incomplete data, fault tolerance.

Keywords

Neural networks Learning Connectionist expert systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Giles C.L. and Maxwell T. (1987) Learning, invariance, and generalization in high-order neural networks, Applied Optics, 26 (1987), 4972–4978Google Scholar
  2. [2]
    Greco G. and Rocha A.F. (1987) The fuzzy logic of to it understanding, Fuzzy Sets and Systems 23 (1987), 347–360CrossRefGoogle Scholar
  3. [3]
    Leão B.L. and Rocha A.F. (1990) Proposed methodology for knowledge acquisition: a study on congenital heart diseases diagnosis, Methods of Inf. in Medicine, 29 (1990), 30–40Google Scholar
  4. [4]
    Machado R.J., Rocha A.F. and Leão B.F. (1991) Calculating the mean knowledge representation from multiple experts. To appear in Multiperson Decision Making Models Using Fuzzy Sets and Possibility Theory, (Fedrizzi M., Kacprzyk J., eds), Kluwer Academic PublishersGoogle Scholar
  5. [5]
    Machado R.J. and Rocha A.F. (1989) Handling knowledge in high order neural networks: the combinatorial neural model, IBM Rio Scientific Center Technical Report CCR076Google Scholar
  6. [6]
    Machado R.J., Rocha A.F. et al (1990) Heuristic learning expert system, Proceedings of 7o Simpósio Brasileiro de Inteligência Artificial, Campina Grande, (1990), 1–7Google Scholar
  7. [7]
    Miller G.A. (1956) The magical number seven, plus or minus two: some limits on our capacity for processing information, Psychological Review 63 (1956), 81–97PubMedGoogle Scholar
  8. [8]
    Rocha A.F. et al (1989) Handling uncertainty in medical reasoning, III International Fuzzy Sets Association Conference, USAGoogle Scholar
  9. [9]
    Rocha A.F., Laginha M.P.R., Machado R.J., Sigulem D., Anção M. (1990) Declarative and procedural knowledge — two complementary tools for expertise. In Approximate Reasoning Tools for Artificial Intelligence (Verdegay J.L., Delgado M., eds), Verlag TuvGoogle Scholar
  10. [10]
    Zadeh L.A. (1965) Fuzzy sets, Information and Control 8 (1965), 338–353CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Ricardo José Machado
    • 1
  • Armando Freitas Da Rocha
    • 2
  1. 1.Rio Scientific Center — IBM BrasilRio de JaneiroBrasil
  2. 2.Biology Institute — UnicampCampinasBrasil

Personalised recommendations